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The human leukocyte antigen (HLA) locus is associated with more complex 
diseases than any other locus in the human genome. In many diseases, HLA 
explains more heritability than all other known loci combined. In silico 
HLA imputation methods enable rapid and accurate estimation of HLA alleles 
in the millions of individuals that are already genotyped on microarrays. HLA 
imputation has been used to define causal variation in autoimmune diseases, 
such as type I diabetes, and in human immunodeficiency virus infection 
control. However, there are few guidelines on performing HLA imputation, 
association testing, and fine mapping. Here, we present a comprehensive 
tutorial to impute HLA alleles from genotype data. We provide detailed 
guidance on performing standard quality control measures for input 
genotyping data and describe options to impute HLA alleles and amino acids 
either locally or using the web-based Michigan Imputation Server, which 
hosts a multi-ancestry HLA imputation reference panel. We also offer best 
practice recommendations to conduct association tests to define the alleles, 
amino acids, and haplotypes that affect human traits. Along with the pipeline, 
we provide a step-by-step online guide with scripts and available software 
(https://github.com/immunogenomics/HLA_analyses_tutorial). This tutorial 
will be broadly applicable to large-scale genotyping data and will contribute 
to defining the role of HLA in human diseases across global populations.

More than 50 years ago, some of the earliest complex human disease 
genetic associations were reported within the major histocompat-
ibility complex (MHC) locus1,2. This locus has since been mapped to 
the short arm of chromosome 6. Sequencing of the human genome 
has revealed that the MHC locus consists of a cluster of more than 
200 genes, including many with immune functions3. The MHC locus 
is broadly divided into three subclasses: the class I region (e.g., HLA-A, 
HLA-B and HLA-C genes), the class II region (e.g., HLA-DPA1, HLA-DPB1, 

HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, 
HLA-DRB2, HLA-DRB3, HLA-DRB4 and HLA-DRB5 genes) and the class 
III region, which contains additional genes implicated in immune and 
inflammatory responses (e.g., complement genes)4 (Fig. 1a). MHC 
class I and II genes encode proteins that form complexes that present 
antigenic peptides to T cells, thereby influencing thymic selection and 
T-cell activation4 (Fig. 1b). MHC class I molecules are expressed in nearly 
all nucleated somatic cells and present self- or cytosolic pathogens to 
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genes renders traditional probe-based genotyping challenging. In addi-
tion, the genetic diversity at HLA genes is highly population-specific, 
necessitating efforts to accurately genotype HLA alleles and investigate 
phenotypic associations in global populations. Accurate HLA typing, 
especially for HLA-DR genes10 is also essential to ensure the safety and 
prognosis of organ transplantation.

These challenges have driven high interest in the genetics com-
munity to develop and deploy statistical techniques for HLA alleles. 
While the direct typing of HLA alleles (e.g., Sanger sequence-based 
typing (SBT) and sequence-specific oligonucleotide probe hybridi-
zation (SSOP)11–15) continues to be costly, labor-intensive and 
unscalable16,17, in silico HLA imputation has recently enabled rapid 
and accurate estimation of HLA alleles in individuals already geno-
typed on microarrays18–20. However, there are few guidelines for HLA 
imputation and fine-mapping; these methods are necessary to define 
HLA effects on human diseases, especially in biobank-scale data from 
multiple populations.

Here, we provide detailed guidelines for imputing HLA alleles 
and testing for their association with human diseases and traits in 
large-scale cohorts and global biobanks. We also provide a step-by-step 
online guide with scripts and available software (https://github.com/
immunogenomics/HLA_analyses_tutorial). Definitions of key terms 
used throughout this article can be found in Table 1.

Overview of the tutorial
The workflow described in this tutorial is summarized in Fig. 2. It is 
composed of two sections: HLA imputation (Fig. 2a) and HLA associa-
tion testing (Fig. 2b). HLA imputation is a method to infer HLA alleles, 
amino acids and single-nucleotide polymorphisms (SNPs) from a 
microarray-based genotype within the MHC region. We first introduce 
the concept of the HLA reference panel (1), which is used as a dictionary 

CD8 T cells. The MHC class I molecule consists of an α-chain (encoded 
in the MHC class I region) and a β2-microglobulin chain (encoded on 
chromosome 15). MHC class I’s antigen-binding groove is closed at 
both ends, restricting the size of the presented peptides. By contrast, 
MHC class II molecules are expressed primarily on antigen presenting 
cells and present processed extracellular pathogens to CD4 T cells. The 
MHC class II molecule consists of α- and β-chains, both encoded within 
the MHC (e.g., HLA-DRA and HLA-DRB1). MHC class II’s antigen-binding 
groove is open ended and accommodates peptides of variable length5. 
The functional importance of the human leukocyte antigen (HLA) genes 
and the highly polymorphic nature of this locus have contributed to 
the MHC region having the largest number of disease associations 
of any locus, genome wide (Fig. 1c). Disease risk associated with the 
MHC is modulated by several underlying mechanisms. For example, 
in rheumatoid arthritis, polymorphisms in the amino acid sequence of 
HLA-DRB1 change the capability to present autoantigens6 or increase 
the number of autoreactive T cells during thymic selection7. In another 
example, the HLA-C*06:02 allele is associated with psoriasis, probably 
owing to an increase in CD8+ T-cell-mediated inflammatory reactions8. 
Schizophrenia’s association within the MHC locus was explained in 
part by structural variation in C4 (complement component 4; a critical 
component of the classical complement cascade, an immune pathway 
that recognizes and eliminates pathogens and cellular debris), which 
might modulate synaptic elimination during development9.

The HLA genes within the MHC have been difficult to study 
because of their highly polymorphic nature, their long history of 
pathogen-driven natural selection and the MHC’s unique long-range 
linkage disequilibrium (LD) structure. The long-range LD spans across 
the whole MHC region, and in particular, variants between the α- and 
β-chain genes of the HLA molecule are in tight LD (e.g., HLA-DRA and 
HLA-DRB1; Extended Data Fig. 1). The highly polymorphic nature of HLA 
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Fig. 1 | Location and structure of HLA genes on human chromosome 6 and 
their associations with human traits. a, A schematic representation of the 
human MHC locus highlighting the three main classes of the region, and the 
genes within them. The classical class I HLA genes are shown in yellow, the 
classical class II HLA genes in blue, the nonclassical HLA genes in purple and the 
genes other than the HLA genes within the MHC region in red. b, Presentation of 
an antigenic peptide by an antigen-presenting cell to a T cell through interaction 

between an MHC class II molecule and a TCR. The inset shows the protein 
structure of the MHC class II complex composed of HLA-DRA and DRB1 bound to 
an antigenic peptide (PDB ID: 3L6F). c, The number of traits associated with any 
variants within a 2 Mb genomic window with P < 5 × 10−8 among the 198 diseases 
and biomarkers in the UK Biobank and FinnGen96. The MHC region is highlighted 
in red. The GWAS data for 198 diseases and biomarkers were obtained and 
analyzed as previously described96.
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to search for similar haplotypes (keyword) to infer unknown HLA types 
(definition). We highlight specifically our multi-ancestry HLA refer-
ence panel, which we recently constructed to enable accurate HLA 
inference in diverse global populations21. We next provide specific 
instructions to perform quality control (QC) of the input genotype 
data (2), per individual and per variant (3). The quality of genotype 
data is critical for achieving accurate imputation, and special caution 
should be taken given the extremely complex and polymorphic nature 
of genetic variants within MHC. We then introduce options to phase 
and impute HLA (4), either (i) on a user’s local server or (ii) by using 
the Michigan Imputation Server (MIS)22, which is a publicly available, 
web-based imputation platform we jointly support with the University 
of Michigan. We finally describe the quality metrics and post-QC of the 
imputed variants (5).

We next describe statistical methods to perform comprehensive 
association tests between HLA genotype and human traits (Fig. 2b). 
Since HLA associations are often explained by amino acid sequences in 
the peptide binding groove of HLA molecules23, we describe strategies 
to fine-map associations with the aim of pinpointing causal variation. 
We start from a simple single-marker test (1), which is similar to that 
commonly used in genome-wide association studies (GWAS), and 
then elaborate on the HLA-specific fine-mapping methods (e.g., an 
omnibus test (2) and a conditional haplotype test (3)). We also intro-
duce statistical tests to define nonadditive, interactive and multitrait 
contributions of HLA alleles.

HLA nomenclature
Sequence variation within the HLA genes is organized by the Interna-
tional Immunogenetics database (IMGT)24, which has documented and 
named 33,490 unique HLA alleles (URL: https://www.ebi.ac.uk/ipd/
imgt/hla/about/statistics/). Within each of the HLA alleles, there are 
nucleotide variants that cause amino acid changes (nonsynonymous 
nucleotide substitutions) and those that do not (synonymous, intronic 
and intergenic nucleotide substitutions). A detailed nomenclature 
system at IMGT has been developed to organize the polymorphisms 
in HLA genes into four fields (Fig. 3a) (ref. 25). Field 1 (the first two 
digits, e.g., HLA-DRB1*01) describes the serological type, which was 
historically defined on the basis of similar seroreactivity to immuno-
logical reagents. Field 2 (the next set of digits, e.g., HLA-DRB1*01:01) 
corresponds to the unique amino acid sequence of the gene; all 
the nonsynonymous changes are reflected in this set. Field 3 (e.g., 
HLA-DRB1*01:01:01) reflects synonymous nucleotide substitutions 
within the coding sequences, and field 4 (e.g., HLA-DRB1*01:01:01:01) 
reflects polymorphisms within the intronic or noncoding regions. Thus, 
whereas nucleotide variants define HLA alleles at up to a four-field 
resolution, most disease associations are captured by a two-field HLA 
resolution, as amino acid sequence captures most of the structural 
differences between the alleles.

The four-field naming system is the current and most widely 
used standard, but alternative nomenclatures are sometimes seen 
in practice. Before the current four-field naming system was intro-
duced, the IMGT used the same nomenclature where each field must 
have two digits, but without a field separator (:). Therefore, one-field 
alleles were called two-digit alleles, and two-field alleles were called 
four-digit alleles. However, as the number of two-field alleles belong-
ing to a given one-field allele began to exceed 100 (e.g., HLA-A*02101 
and HLA-B*15101), the ‘four-digit’ designation became inappropriate. 
Thus, the IMGT updated the previous nomenclature system by intro-
ducing the field separator (e.g., HLA-A*02:101 and HLA-B*15:101) and 
four-field naming system26.

In this same update, the IMGT introduced two additional 
nomenclature schemes to facilitate practical reporting of HLA 
typing: G group and P group. Current classical HLA typing tech-
nologies such as SBT sometimes cannot resolve an HLA allele at a 
four-field resolution13 and instead define a group of similar alleles on 

the basis of the variations within peptide binding domains (exon 2 
and 3 for class I HLA genes and exon 2 for class II HLA genes)26. The 
G group nomenclature represents HLA alleles that share the same 
nucleotide sequence in the peptide-binding domain. For instance, 
HLA-A*01:02:01G includes HLA-A*01:02:01:01, HLA-A*01:02:01:02,  
HLA-A*01:02:01:03 and HLA-A*01:412, but not HLA-A*01:02:02. The  
P group nomenclature represents HLA alleles that share the same protein  
sequence in the peptide binding domain. For example, HLA-A*01:02P 
includes HLA-A*01:02:01:01, HLA-A*01:02:01:02, HLA-A*01:02:01:03, 
HLA-A*01:02:02 and HLA-A*01:412.

HLA imputation
Genotype imputation is the term used to describe estimation of missing 
genotypes that are not assayed in the target dataset. Most imputation 
methods use data from densely genotyped samples as a reference data-
set in which haplotypes have been inferred27. These methods typically 
use statistical approaches such as hidden Markov models (HMM) to 
fill in missing genotypes in a dataset of interest with incomplete geno-
type data. The genotype data reflects the observed states, while the 
template haplotypes are represented as the unknown hidden states. 
Most imputation algorithms produce a probabilistic prediction of 

Table 1 | Key terms used in the tutorial

Term Definition

MHC region The genomic region that harbors the MHC. In GRCh37, 
it corresponds to chr6:28,477,797-33,448,354 (6p22.1-21.3). 
In GRCh38, it corresponds to chr6:28,510,020-33,480,577

Linkage 
disequilibrium

A nonrandom association or dependence of alleles at 
different loci in a given population, making the frequencies 
of the alleles deviate from the expected frequency if the 
alleles were independent

Imputation A statistical method of estimating the missing genotypes 
at loci that are not assayed in the target dataset

Reference panel A panel of densely genotyped haplotypes to be referred 
to when predicting the missing genotypes in the target 
cohort through imputation

Haplotype A stretch of DNA sequences (including multiple 
polymorphic loci) along one chromosome that tend  
to be inherited together due to LD

Allele One of two versions of a DNA sequences. An individual 
inherits two alleles (maternal and paternal) for any 
genomic location

HLA allele One of the possible sequence variations at a given  
HLA gene

Genotype An individual’s pattern of DNA sequence at a given 
location. Two alleles, one from the mother and one from 
the father, comprise a genotype

Haplotype 
phasing

Estimation of haplotypes from genotype data that 
usually do not provide phase information. Computational 
haplotype phasing can be done by statistical methods 
such as expectation maximization algorithm and hidden 
Markov models (HMM)

Fine-mapping A procedure to narrow down and define potentially 
causal genetic variation(s) affecting the trait of interest, 
from all the associated genetic variations at a given locus 
in genome-wide association studies (GWAS) by using 
statistical methods

Homozygous A state where the two alleles at the genetic variation  
of interest (e.g., an HLA gene) are the same

Heterozygous A state where the two alleles at the genetic variation  
of interest (e.g., an HLA gene) are different

Association test A statistical test to determine whether a given genotype 
frequency differ between two groups of individuals  
(e.g., cases and controls) or a genotype is correlated  
with a given quantitative phenotype

Allele 
divergence

A proxy for the functional difference in antigen binding 
between two HLA alleles based on the divergence of the 
amino acid sequences they encode
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each imputed genotype. These probabilities can be used to calculate 
either (1) a probabilistic dosage, which is a simple sum of the expected 
probabilistic allele counts, or (2) a best-guess genotype, which is a 
combination of the alleles that have the largest probability. These val-
ues can then be used in the downstream analyses. Dosages inferred 
from imputed results are continuous values between 0 and 2, whereas 
best-guess genotypes are discrete values of 0, 1 or 2 alleles. Genotype 
imputation can boost the power of subsequent association studies, 
help fine map the signal and enable meta-analysis of multiple cohorts27.

It is essential to understand the accuracy of imputation before 
using the imputed genotypes for downstream analyses. The quality 
of predictions can be technically measured by masking the genotypes, 
imputing them and deriving the correlation between the true (masked) 
genotype and the predicted genotype. We favor using this correlation 
as a metric, as opposed to accuracy (percent of concordance between 
true genotype and imputed genotype calls), since accuracy can be 
upwardly biased for rare alleles. In practice, true genotype data is 
often missing. In these instances, we can also estimate the quality  
of imputation, Rsq, by the ratio of the empirically observed variance of  
the allele dosage to the expected binomial variance at Hardy–Weinberg 
equilibrium (HWE).

HLA imputation is a natural extension of the genotype imputation. 
The HLA imputation infers HLA alleles, amino acid polymorphisms and 
intragenic SNPs within HLA (hidden state). Due to the excessive varia-
tion in HLA genes, these variants generally cannot be accurately assayed 
with popular probe-based genotyping arrays. HLA alleles are inferred 
indirectly by using surrounding genotyped SNPs in the MHC region 
(‘scaffold’ variants; Fig. 2a). Reference haplotypes are constructed 
from samples with both genotyped SNPs and HLA alleles genotyped 
by either classical SBT11 or inference from untargeted sequencing data, 
such as whole-genome sequencing (WGS) data28,29. The HLA amino 
acid sequences and intragenic SNPs within HLA genes can also be 
included in the reference haplotypes to enable imputation. There are 
many widely used statistical software tools to perform the HLA impu-
tation, such as SNP2HLA18, HIBAG20, HLA*IMP19, HLA-IMPUTER30 and 
GRIMM31. SNP2HLA and HLA*IMP use the same HMM algorithm used 
in genome-wide imputation, whereas HIBAG uses a machine-learning 
technique called a bagging method32. Imputation performance is often 
related to the size, quality and suitability of the reference panel rather 
than the statistical software used. The output of the HLA imputation 
is a posterior probability as well as an effective dosage (ranging from 
0 to 2) for each HLA allele in a given sample. Subsequent association 

Disease HLA alleles HLA amino acid positions (Omnibus test)

HLA haplotypes (Conditional haplotype test)

HLA association and fine mapping
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Fig. 2 | Overview of HLA imputation, association and fine mapping. a, A toy 
example illustrating the workflow for HLA imputation. The process begins with 
(1) either using an existing HLA imputation reference panel or creating a custom 
one, (2) collecting the input genotype in the MHC region from the target cohort 
without HLA types, (3) performing QC of the target genotype, (4) genotype 
phasing and imputation to predict the untyped HLA alleles in the target cohort 

(locally using the SNP2HLA software or online using the MIS), and results in (5) 
predicted HLA alleles in the target cohort. b, Statistical methods to investigate 
and fine-map association of (1) individual HLA alleles, (2) amino acid positions 
comprising multiple residues (highlighted in blue) and (3) their haplotypes 
(highlighted in red) with a trait of interest. See Fig. 3 for an overview of HLA allele 
nomenclature and structure.
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tests usually account for the uncertainty of the imputation by using the 
estimated dosage as an explanatory variable of interest, which is used 
to test the association between the genotype and the trait.

HLA imputation reference panel. There have been many efforts to 
construct haplotype reference panels in the MHC region to enable 
HLA imputation. Since the haplotype structure within the MHC region 
differs significantly among populations21, it is important that the tar-
get dataset is well represented by the reference haplotype panel. The 
current availability of published HLA reference panels is summarized 
in Table 2.

It is also possible to construct a custom HLA reference panel using 
tools such as SNP2HLA18, HLA-TAPAS21 and HIBAG. Starting with a SNP 
genotyped cohort (‘scaffold variants’), we can either (1) obtain the 
gold standard SBT of HLA alleles (such as SSOP11) if DNA is available or 
(2) infer HLA alleles from WGS (e.g., HLA*PRG and HLA*LA)28,29,33. Refer-
ence panels can include alleles of classical HLA genes21 that are most 
polymorphic and disease associated, or both classical and nonclassi-
cal HLA genes34. In the SNP2HLA algorithm, HLA alleles are converted 
to biallelic markers (e.g., one indicates the presence of the allele and 
0 indicates the absence of the allele). Classical SBT, such as SSOP,  
is the most accurate approach to HLA genotyping13–15. Incorporation of 
sequence-based HLA genotypes into reference panels results in highly 
accurate imputation; however, since SBT is costly and labor intensive, 

it cannot be easily used to build large reference panels. Graph-based 
inference of HLA alleles from WGS is a potential alternative method that 
can be easily applied to large sequencing datasets that are increasingly 
available28,29,33, including low-coverage datasets. However, an important 
caveat is that the accuracy of HLA typing by those graph-based methods 
can be variable. Imputation performance is affected by (i) quality of the 
sequencing data, (ii) read coverage and length, (iii) representation of 
the population in reference databases such as IMGT and (iv) the degree 
of sequence variation within the targeted HLA gene. For example, the 
HLA*LA algorithm, one of the currently available graph-based HLA  
inference software tools, showed relatively accurate HLA typing at 15× 
coverage but no benchmarking data has been shown below 15× (ref. 29). 
For studying underrepresented populations or highly polymorphic 
genes, gold-standard SSOP might still be necessary to construct a 
suitably accurate reference panel. Use of long-read sequencing or 
relatively longer read sequencing beyond 150 bp could also enable 
more unambiguous HLA typing and sequencing-based haplotype 
determination35,36.

To enable imputation of amino acid polymorphisms and intragenic 
HLA SNPs, we can encode all these variants as binary markers on the 
basis of the reference amino acid and nucleotide sequences of each 
observed HLA allele from the IMGT HLA Database (https://www.ebi.
ac.uk/ipd/imgt/hla/) (Fig. 3b). The scaffold genetic variants within 
the MHC region are usually obtained by either genotyping with a SNP 
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Fig. 3 | Nomenclature, structure and encoding of HLA alleles. a, The 
nomenclature of HLA alleles consists of four fields, with each field corresponding 
to the types and consequences of nucleotide variations. b, (Top) The amino acid 
sequences defining each of three example HLA-DRB1 alleles. The amino acids 
colored in red indicate the positions where they have variations among the 
alleles. The numbers (−25 and −24) at the bottom indicate the relative position  

of those amino acids within a coding region of HLA-DRB1. The negative positions 
indicate amino acids within a signal peptide, which is not part of the HLA protein 
presented on a cell surface. (Bottom) A procedure to code each of the HLA alleles 
and amino acid polymorphisms as binary markers: 1 if that marker is present 
within a haplotype and 0 otherwise. Each of the residues is coded separately for  
a given amino acid position in the corresponding HLA protein.
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microarray or WGS. Stringent SNP QC is essential for accurate haplo-
type phasing and, ultimately, accurate imputation. In constructing and 
updating a multi-ancestry HLA reference panel, we optimized this QC 
process to maximize imputation accuracy. Specifically, we started with 
QCing each of the global cohorts separately, with genotype call rate (for 
a given variant, the percentage of individuals for which the correspond-
ing variant information is not missing and confidently called; >95%) and 
sample call rate (for a given sample, the percentage of genetic variants 
that were not missing and confidently called; >90%). We then retained 
the variants that were present in the 1000 Genomes Project37 and 
excluded any variants that were not included in commonly used geno-
typing arrays (Illumina Multi-Ethnic Genotyping Array, Global Screen-
ing Array, OmniExpressExome and Human Core Exome). Since these 
variants are not included in the target genotype data, they are more 
likely to result in phasing switch errors (i.e., the number of required 
recombination events in inferred phased haplotypes to obtain the true 
haplotype phase divided by the number of possible opportunities for 
switch error, as a metric for phasing inaccuracy38) without improving 
imputation accuracy. When combining all the cohorts to construct 
the multi-ancestry panel, we cross-imputed all the variants together 
to avoid excluding population-specific variants that are polymorphic 
in a specific cohort but monomorphic and thus not called in the other 
cohorts (Extended Data Fig. 2). The final reference panel includes the 
HLA alleles, amino acids, intragenic HLA SNPs and the ‘scaffold’ variants 
(i.e., SNP variants outside an HLA gene but within the extended MHC 
region), which are then haplotype-phased statistically or by using trios 
(genotype data from a mother, a father and a child).

Imputed HLA alleles and variants are often used for subsequent 
association testing and meta-analyses to fine-map disease risk. Such 
studies potentially include data from multiple cohorts, datasets or 
populations. To avoid spurious associations due to batch effects and 
population stratification, it is essential to perform HLA imputation on 
all datasets using the same reference panel, ideally with all case and con-
trol samples genotyped together. Given that such case-control cohorts 
may originate from multiple populations to increase the fine-mapping 
resolution, we constructed an HLA reference panel covering multiple 
global populations21.

With the publication of this tutorial, we present an updated ver-
sion of this multi-ancestry panel (version 2). In brief, we added samples 
from European (n = 2,233) and Japanese (n = 723) ancestry for a total 
of 20,349 individuals. This panel represents admixed African, East 
Asian, European and Latino populations. We also updated HLA allele 
calls and a set of scaffold variants. We plan to maintain and update the 
panel further to increase representation of globally diverse popula-
tions, improve the HLA allele calls and refine the selection of scaffold 
variants to achieve the most accurate imputation.

Recommendations for collecting genotype and phenotype 
information
When designing a study to investigate the effect of HLA variation on 
human traits, it is important to be strategic when collecting genotype 
and phenotype data. For genotype data collection, one should ensure 
that the genotyping array used for the target cohort has a high coverage 
in the MHC region to adequately include variants that are in LD with 
HLA alleles, which contributes to accurate imputation. While most 
currently used genotyping arrays include a sufficient number of SNPs 
to tag HLA alleles for accurate imputation, some arrays have limited 
SNP coverage of the MHC region (Supplementary Table 1) (ref. 39). We 
and others have shown that lower MHC coverage results in inaccurate 
imputation18,40. Furthermore, all study participants should ideally be 
genotyped together with the same genotyping array, to avoid intro-
ducing any structure that could cause a bias in imputation and the 
subsequent association testing and fine-mapping.

Careful phenotype curation is very important when fine-mapping 
disease-associated variants. On one hand, discovery of HLA association 
signals can be enhanced by the addition of samples with less rigor-
ously curated phenotypes (e.g., billing codes in large-scale biobanks). 
However, fine-mapping accuracy can be negatively affected by includ-
ing misclassified samples. For example, studies of autoimmune dis-
ease including different categories of patients with heterogeneous 
clinical phenotypes or pathological pathways can obscure efforts 
to localize disease alleles. This has, for instance, been observed in 
rheumatoid arthritis, where patients with positive antibody status 
are phenotypically and genetically different from those with negative 

Table 2 | Available HLA imputation reference panels

Imputation software Name Ancestry/population Number of samples Availability

SNP2HLA18 T1DGC European 5,225 Upon registration

SNP2HLA Pan Asian91 Han Chinese, Southeast Asian Malay, Tamil Indian 
ancestries and Japanese

530 Publicly available

SNP2HLA Okada et al.92 Japanese 908 Upon registration

SNP2HLA Hirata et al.34 Japanese 1,120 Upon request

SNP2HLA Zhou et al.93 Han Chinese 20,635 Publicly available

SNP2HLA Kim et al.94 Korean 413 Publicly available

SNP2HLA 1KG Global populations in 1000 Genomes Project (Africans, 
East Asian, European, South Asian and Americas)

2,504 Publicly available

HLA-TAPAS21 1KG Global populations in 1000 Genomes Project (Africans, 
East Asian, European, South Asian and Americas)

2,504 Publicly available

MIS (Minimac) Multi-ancestry Multi-ancestry (admixed African, East Asian, European 
and Latino)

20,349 Limited public accessibility 
on web

HIBAG20 HLARES Multi-ancestry (European, Asian, Hispanic and African) 4,000 Publicly available

HIBAG IKMB Multi-ancestry (African American, European, East Asian, 
Indian and Iranian)

1,360 Publicly available

HIBAG Degenhardt et al.95 Multi-ancestry (African American, European, East Asian, 
Indian and Iranian)

~1,300 Upon request

HLA*IMP19 1958 Birth Cohort + 
HapMapCEU

European ~2,500 Limited public accessibility 
on web

Currently available HLA imputation reference panels, the sample ancestry, the number of samples and whether they are publicly available. ‘Limited public accessibility’ means that while the 
raw reference panel (individual-level genetic data) is not accessible, users can use it for imputation via a web-based imputation service.
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antibody status41,42. Recently, many efforts have been made to curate 
the phenotypes in large-scale biobanks43 using self-reported disease 
status or billing codes (e.g., ICD-10) (ref. 44). While the large number 
of samples in these biobanks may enable discovery of disease-related 
alleles, imprecise phenotype labeling inherent to these forms of pheno-
typing may confound HLA fine mapping. In contrast, physician-curated 
cohorts, which require more efforts on accurate phenotyping and thus 
are inevitably smaller than biobanks, may be important for accurate 
fine mapping of the alleles.

In addition to disease phenotypes, one must exercise caution 
when measuring HLA-related molecular phenotypes, such as HLA 
gene and protein expression. It is well established that HLA gene and 
protein expression is affected by cis-regulatory genetic variants (i.e., 
expression quantitative trait loci (eQTL; genetic loci that affect the 
expression levels of genes) and protein eQTL (pQTL; genetic loci that 
affect the protein levels))45–47. When conducting eQTL studies, measur-
ing HLA expression in RNA-sequencing data is particularly challenging 
owing to the high degree of genetic polymorphism among individuals. 
Standard expression quantification pipelines rely on a single human 
reference genome to align sequencing reads. The number of reads map-
ping to each HLA gene might be biased for two reasons: (1) the reads 
may fail to map to the reference due to the high degree of sequence 
variation (i.e., a large number of mismatches) and (2) the reads may 
not uniquely map to a single gene in the reference due to the similar-
ity among nearby HLA genes (i.e., multimapping)47. To address this, 
more accurate gene expression estimates can be obtained by using an 
HLA-personalized reference47; instead of using a standard single human 
reference genome, we can supply customized HLA sequences for each 
target individual for each HLA gene (on the basis of either classical HLA 
typing or HLA imputation) to minimize the degree of variation between 
the RNA-sequencing reads and the reference, and hence reduce the 
possibility of mapping failures and multimapping. Similarly, caution 
should be taken for HLA pQTL studies. HLA protein expression is often 
measured by antibody-based methods (e.g., antibody-derived tags; 
antibodies against a protein conjugated with oligonucleotides that 
can be captured by PCR amplification and detected by sequencing) at 
single-cell resolution48. However, these antibodies may have differing 
binding affinities to the protein products of different HLA alleles. We 
should take caution when conducting pQTL studies, since this differing 
affinity might cause a bias toward specific HLA alleles when measuring 
the abundance of HLA proteins across individuals.

QC of the target genotype data
QC of genotype data before HLA imputation is extremely important. We 
next outline the basic QC measures commonly used in GWAS49, as well as 
specific instructions to handle genetic variants within the MHC region. 
These QC measures are typically performed once for each genotyping 
batch, followed by data integration and final QC for the combined 
dataset (Fig. 4). We assume that the target genotype data is convention-
ally constructed from cost-effective microarray-based genotyping, in 
which a limited number of genetic variants (approximately hundreds 
of thousands to a million) are typed that tag untyped variants by LD to 
cover genome-wide variants through imputation50. However, low-pass 
WGS after rigorous QC can be used to obtain SNP genotypes (e.g., HELIC 
study51,52). This could be used as an alternative cost-effective strategy 
especially in biobanks from populations underrepresented in GWAS 
studies (e.g., African populations), since commonly used microarrays 
may not sufficiently cover specific variants for these populations53.

Per-individual QC. We follow established guidelines43,49,54 to perform 
standard per-individual QC in GWAS. Typically, we remove (i) individu-
als with high missingness (e.g., >0.02), (ii) individuals with outlier high 
heterozygosity on suspicion of sample contamination, (iii) individuals 
with discordant sex information between the metadata and genotype 
and (iv) individuals suspected to be duplicate samples on the basis of 

genotype relatedness. We note that the threshold for each QC meas-
ure could be data dependent, and thus we recommend reviewing the 
distributions of those metrics for each of the datasets.

Per-variant QC. It is important to select high-quality variants to achieve 
accurate imputation. We will describe the variant QC that is generally 
recommended for GWAS as well as specific considerations for the MHC 
region. As part of standard GWAS QC, we recommend ensuring that 
the target genotype data has genomic positions based on the same 
genome build as the reference panel. LiftOver software55 can re-map 
the genomic position from the build used in the genotype data (e.g., 
GRCh38) over to the desired build used in the reference panel (e.g., 
GRCh37). Next, genomic variants are typically aligned to the forward 
strand to be consistent with the reference panel. We also identify dupli-
cated variants within the dataset on the basis of genomic position and 
alleles, and de-duplicate them by removing ones with higher missing-
ness. We then remove (i) variants with high missingness (e.g., >0.01), 
(ii) variants demonstrating a significant deviation from the HWE and 
(iii) variants with very low minor allele frequency (MAF). Specifically, 
we remove variants an MAF lower than 0.01 or 0.005, or small minor 
allele count (e.g., <5), assuming low accuracy in genotype calling from 
clustering. The sample size should be accounted for when we use minor 
allele count. The estimated ancestry should also be accounted for in 
order to retain informative population-specific variants. For example, 
if the data consists of a mixture of different ancestries and one ances-
try is underrepresented, we might calculate MAF separately for each 
ancestry and retain the union of common variants in each ancestry so 
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Fig. 4 | A flow chart of suggested analytical steps for genotype QC and HLA 
imputation. A best-practice guideline to impute HLA alleles by using SNP2HLA 
algorithm, depending on the characteristics of the target genotype data.
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that we do not lose variants specific to the underrepresented popula-
tion. We usually only keep biallelic variants and remove multi-allelic 
variants for simplicity in the imputation.

Specific caution should be taken when performing per-variant QC 
in the MHC region, owing to (i) highly variable allele frequency (AF) of 
variants within MHC across populations and (ii) expected HWE devia-
tion in the MHC variants due to natural selection. For example, the AF 
variability could be an issue when performing strand alignment. We 
usually align target genotype alleles to the forward strand as used in 
the reference panel. To do so, we have to consider whether the SNP is 
‘palindromic’. A palindromic SNP (or an ‘ambiguous’ SNP) is a SNP in 
which the two alleles for that variant are complementary each other 
(i.e., SNPs with A/T or G/C alleles) and the reverse-stranded alleles 
yield the same genotype as the forward-stranded alleles. When we 
align nonpalindromic SNPs, we can simply look up the alleles with the 
same position in the reference human genome sequence on the forward 
strand. If the alleles between the target and the reference genome are 
different (e.g., A/C in the reference but T/G in the target), we flip the 
alleles in the target dataset (swap alleles from T to A and from G to C in 
the target). On the other hand, in handling palindromic SNPs, we usu-
ally compare population-derived AF and the AF in the target dataset 
to eliminate allele ambiguity. If the AFs between these datasets are 
largely different (e.g., A: 20% and T: 80% in the population reference 
but A: 78% and T: 22% in the target), we can flip the alleles in the target to 
be consistent with the population-derived AF (swap alleles from A to T 
and from T to A). However, this strategy might be ineffective within the 
MHC since the reference AF for those SNPs might be different from the 
target samples when the study population is different, when there are 
large AF differences between cases and controls in case-control studies, 
or when the study sample size is too small to estimate AF accurately. 
Therefore, when the strand information of those palindromic SNPs is 
ambiguous in the target genotyping array or the genotyped data, it 
may be preferable to exclude all the palindromic SNPs. Second, we may 
compare the AF of the variants after QC in the target data with the AF in 
the population-frequency database (e.g., 1000 Genomes Project37 and 
gnomAD56) or the AF in the reference panel as a sanity check. When the 
AFs are very different between the two, those variants could be subject 
to genotyping error and should probably be removed. However, when 
the population does not exactly match between the target and the data-
base or the reference, this strategy might be ineffective within the MHC. 
Thus, we could consider using a liberal threshold when removing vari-
ants on the basis of the AF differences. Third, extreme deviation from 
HWE is usually indicative of a genotyping or genotype-calling error 
that results in poor clustering57–59 and is used as a metric to exclude 
poor-quality variants. However, the deviation from HWE is, to some 
extent, expected in the MHC region owing to natural selection60 or to 
the difference in AF between cases and controls. The expected deviation 
will be greater when we study a cohort from multiple populations or  
of admixed ancestry, or when the effect of HLA on the disease is large 
or has a nonadditive nature. Therefore, for the purpose of per-variant 
QC, we could consider (1) calculating HWE P values only within control 
individuals (as is generally recommended in GWAS), (2) calculating 

HWE P values within individuals from the most common ancestry or 
(3) using a liberal threshold such as HWE P < 1 × 10−10 when removing 
variants suspected of poor clustering while retaining the important 
markers for HLA imputation that could inherently deviate from HWE 
due to natural selection60. When we are unsure about the threshold, an 
appropriate value can be identified by visually inspecting the genotype 
cluster plots (e.g., in GenomeStudio by Illumina).

Tools for genotype phasing and HLA imputation
Once we prepare the optimal HLA reference panel and QC the target 
genotype data, we start HLA imputation for the target data. Table 3 
summarizes the main software programs for HLA imputation. Of note, 
some imputation programs take as input the genotype files directly 
after the QC as described above, while others require users to pre-phase 
the genotypes to obtain haplotypes19,22 before imputation (Fig. 4).

SNP2HLA, developed by our group, and its extensions21,61, are 
among the most widely used algorithms for HLA phasing and imputa-
tion; therefore, here, we focus on HLA imputation using the SNP2HLA 
algorithm along with its cloud-based implementation at the MIS 
(https://imputationserver.sph.umich.edu/index.html).

SNP2HLA. The SNP2HLA18 program can phase and impute HLA alleles, 
amino acids and intragenic SNPs with HMM implemented in BEAGLE62 
by taking the target genotype file after QC in the PLINK format as an 
input. The input file is internally processed to extract variants within 
the MHC (29–34 Mb), and then to correct or remove strand errors when 
possible on the basis of the genotype and AF of palindromic SNPs. 
In addition to the original bash scripts (http://software.broadinsti-
tute.org/mpg/snp2hla/), there are several extensions to the SNP2HLA 
algorithm such as HLA-TAPAS21 (with association test function) and 
CookHLA61 (with improved imputation algorithm). We also provide a 
step-by-step guide to SNP2HLA implementation, along with a script 
that allows users to specify all the QC thresholds as optional param-
eters to handle various target cohorts (e.g., the target populations, 
the number of samples) on our tutorial website (https://github.com/
immunogenomics/HLA_analyses_tutorial).

We note that the original implementation using BEAGLE scales to 
fewer than 10,000 samples in the target dataset. To address this, we 
also provide a pipeline using another imputation software, Minimac22, 
which can scale to hundreds of thousands to millions of individuals. To 
use Minimac for imputation, we first pre-phase the genotype by using 
methods such as SHAPEIT63 or EAGLE64. EAGLE has an advantage of 
accurate and fast phasing when the number of samples is large (e.g., 
N >10,000). The pre-phased output file must be converted into the 
Variant Call Format (VCF), and then used as an input to the Minimac 
software.

MIS. While HLA imputation using the SNP2HLA algorithm can be 
conducted locally using publicly available HLA reference panels, not 
all the HLA reference panels are available due to data sharing and 
privacy restrictions. Our latest multi-ancestry HLA reference panel 
is one such restricted-access panel21. To enable widespread access, 

Table 3 | Representative software programs for HLA imputation and their requirements

Imputation software Pre-phasing Input file format Local Output Amino acid 
imputation

SNP2HLA18 Unnecessary plink Yes VCF Yes

SNP2HLA + Minimac Necessary phased VCF Yes VCF Yes

MIS (Minimac)22 Recommended when the sample size of the 
genotype data (N) is small (e.g., N < 5,000)

VCF No VCF Yes

HIBAG20 Unnecessary plink Yes R object Yes

HLA*IMP19 Necessary phased Oxford haps/sample No CSV No

HLA imputation software programs and their specifications and details about the input and output.
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we implemented HLA imputation on the MIS (https://imputation-
server.sph.umich.edu/index.html), which is a cloud-based imputation 
server with a user-friendly interface (Extended Data Fig. 3). We host 
the multi-ancestry HLA reference panel at the MIS and implement the 
HLA imputation using Minimac as described above. In brief, the user 
first creates an account online, and securely uploads either a phased or 
unphased VCF genotype file if the file can be uploaded to the secure web 
server. If the uploaded genotypes are unphased, the uploaded genotype 
file will be phased within the MIS using the EAGLE algorithm. As noted 
above, we recommend to pre-phase the genotype (with the reference 
haplotype when possible) using SHAPEIT or other software when the 
sample size is small (e.g., N < 5,000) to achieve accurate phasing before 
imputation. The MIS automatically performs basic QC of the input VCF 
file for the strand orientation and alleles in accordance with the refer-
ence. If the input passes the QC steps, the MIS seamlessly performs the 
HLA imputation. The user will be notified with a download link for the 
imputed VCF file encrypted with a one-time password via email once the 
imputation is completed. The MIS has been used to impute more than 
6 million genomes since we started the web-based HLA imputation ser-
vice in 2021. We benchmarked the performance of HLA imputation on 
the MIS using individuals with both SNPs and (masked) gold-standard 
HLA alleles identified by Sanger SBT65,66 in the 1000 Genomes Project. 
We confirmed that the imputation accuracy measured by dosage cor-
relation with true HLA alleles was very high across populations (mean 
dosage correlation r = 0.981 for two-field alleles with MAF >0.05; Fig. 5).

Postimputation QC
The output from the HLA imputation software is accompanied by a 
quality metric conveying the confidence or estimated accuracy of impu-
tation per allele. A thorough review of these imputation metrics and 
their correspondence to imputation accuracy is described in Marchini 
and Howie27. We typically QC the imputed HLA alleles, amino acids and 
intragenic SNPs on the basis of imputation metrics before association 
testing. SNP2HLA, Minimac and MIS all include Rsq as a quality metric. 
The appropriate Rsq threshold for QC may depend on the study design; 
for example, we commonly use Rsq >0.7 in single cohort studies and 

Rsq >0.5 in multicohort meta-analyses. By removing imputed alleles 
that are below this Rsq threshold, some individuals might end up having 
an HLA gene for which the total number of two-field alleles does not 
sum up to exactly 2. Those individuals might bias the fine-mapping of 
disease-causing alleles, which we will explain in the subsequent sec-
tions. Thus, we recommend removing any individuals that do not have 
two two-field alleles for a given gene when conducting conditional 
haplotype tests using two-field alleles.

We recommend calculating true imputation accuracy from clas-
sical HLA typing if it is available for a subset of study individuals. While 
the estimated imputation accuracy generally corelates well with the 
true accuracy, having the ability to internally benchmark with classical 
allele typing for a subset of the cohort is useful for evaluating the true 
imputation performance, especially if the reference panel imperfectly 
represents the genetic ancestry of the imputed cohort.

HLA association and fine-mapping
In the following sections, we introduce basic and advanced methods 
for testing the significance of the imputed HLA variants associated 
with a trait or a risk of a disease. In addition to the statistical models 
presented in the mathematics formulas below, we also provide exam-
ple command-line scripts to perform all these statistical tests on our 
website (https://github.com/immunogenomics/HLA_analyses_tutorial).

Single-marker tests. Single-marker genetic association tests are used 
to investigate whether a specific HLA allele, amino acid or SNP is statisti-
cally associated with a risk of a disease or a trait of interest. Similar to the 
approach used in GWAS, we perform a logistic regression (for traits in 
case-control studies) or a linear regression (for quantitative traits) for 
the imputed binary makers that indicate the presence (coded as T in the 
imputed VCF file) or absence (coded as A in the imputed VCF file) of the 
selected HLA allele, amino acid or intragenic SNP. For the markers, we 
typically use the imputed probabilistic dosage genotypes to account 
for any imputation uncertainty. We include study-specific covariates 
that could independently explain the trait of interest, such as sex, age 
and genotype batches, as well as genotype principal components (PCs) 
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Fig. 5 | HLA Imputation quality in MIS. a–e. Dosage correlation r (y axis) 
between the MIS imputed dosage and true genotypes of all two-field alleles 
in 1 KG samples as a function of AF (x axis), colored by HLA gene, for all 1 KG 
individuals (a) or per ancestry (b–e). f, The accuracy (concordance) of the 

imputed dosage of all two-field alleles in 1 KG samples in the MIS and the true 
genotype of those per HLA gene and per ancestry. The accuracy metric was 
calculated as previously described18. EUR, Europeans; EAS, East Asians; AMR, 
admixed Americans; AFR, Africans.
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to account for population stratification, and an indicator variable of 
cohorts when combining multiple cohorts.

The logistic regression can be formulated as:

log (oddsi) = β0 + βaga,i +∑
k
βkxk,i +∑

l
βlPCl,i

where log (oddsi) is the natural log of the odds ratio for case-control 
status in individual i, a indicates the specific allele being tested and ga,i 
is the imputed dosage of allele a in individual i. The allele a could be 
either a single HLA allele, a single amino acid polymorphism or a single 
SNP. The βa parameter represents the additive effect per allele. For all 
covariates, k, xk,i and βk are the covariate k’s value in individual i and the 
effect size for the covariate k, respectively. Similarly, PCl,i and βl are the 
first lth genotype PC value in individual i and the effect size for the first 
lth genotype PC, respectively, to control for genetic ancestry. The β0 
is the logistic regression intercept.

Quantitative traits that follow continuous distributions (e.g., 
antibody levels, blood cell counts, etc.) can be analyzed by using linear 
regression similarly:

y = β0 + βaga,i +∑
k
βkxk,i +∑

l
βlPCl,i

where y is a quantitative trait of interest and is normalized by a Z score 
or an inverse-normal transformation when the trait does not follow the 
Gaussian distribution implicitly assumed in the linear regression model.

These association tests can be conducted using conventional 
GWAS software, such as PLINK67, SAIGE68 or BOLT69, by directly using the 
output VCF files from imputation generated by either SNP2HLA or MIS. 
We use the dosage values designated as ‘DS’ in the imputed VCF files to 
conduct dosage-based association tests. The imputed genotype VCF  
file encodes the HLA alleles or amino acid residues as binary markers as 
we explained in the ‘HLA imputation reference panel’ section (Fig. 3b). 
‘P’ or ‘T’ denotes the presence (or number of copies) of the allele in  
the variant name, whereas ‘A’ denotes the absence of the allele. When 
interpreting results from an association analysis, the effect estimate 
indicates the effect of having one copy of the effect allele on the log 
odds ratio of the disease. Therefore, the effect estimate should cor-
respond to the presence of the effect allele (denoted with ‘P’ or ‘T’) 
rather than the absence of the allele (denoted with ‘A’).

Also, we note that the association of rare alleles might be spurious 
due to both the limited accuracy in imputation and the noise in the 
estimate in the regression. Thus, we might QC the association statistics 
by MAF to exclude rare alleles (e.g., MAF <1% or 0.5%).

The OR calculated from the beta (eβ) is the estimated risk explained 
by having one copy of the HLA allele of interest, and the P value indi-
cates its significance of the association. Given the strength of LD in the 
MHC region, trait associations to multiple HLA alleles, amino acid poly-
morphisms or intragenic SNPs may yield significant results. Further 
analysis is then required to identify which allele(s) most significantly 
explain(s) the disease risk within the HLA region.

Omnibus tests for fine-mapping amino acid position. To narrow 
down the causal position within amino acid sequences encoded by a 
specific HLA gene, we perform an omnibus test. This analysis is particu-
larly useful when we seek to define mechanisms for the HLA association 
with a particular disease, for example, by changing the amino-acid 
compositions at the peptide binding groove of the HLA molecule. In 
the omnibus test, we estimate the total effect on our trait of interest 
of all amino acid content variation at a given amino acid position, 
rather than the separate effects of individual amino acids that appear 
at that position, as we did in the single-marker test. For an amino acid 
position that has M possible amino acid residues, we assess the signifi-
cance of the improvement in fit for the full model that includes M − 1 
amino acid dosages as explanatory variables when compared with a 
reduced model without those amino acid dosages. We usually select 

one amino acid residue that is most common in the studied cohort as  
the reference allele, and use all the other amino acid residues (M − 1) 
as the explanatory variables. We assess the improvement in model fit 
by the delta deviance (sum of squares) using an F-test with M − 1 degrees 
of freedom and derive the statistical significance of the improvement.

Fullmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i +

M−1
∑
m=1

βmAMm,i

Reducedmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i

where m is one amino acid residue at this position, M is the total number 
of observed amino acid residues at this position, and AMm,i and βm are 
the amino acid dosage of the residue m in individual i and the effect 
size for the residue m, respectively.

We may use the permutation procedure to determine whether 
the observed association at a single-marker test is primarily driven by 
HLA alleles (e.g, HLA-DRB1*04:01) or amino acid polymorphisms (e.g., 
HLA-DRβ1 positions 11, 71 and 74) (ref. 23). To do so, we shuffle the corre-
spondence between amino acid sequences and each of the two-field HLA 
alleles that were originally defined in the IMGT database as described 
above. Then, in each permutation, we select each amino acid polymor-
phism and assess the improvement in deviance after including this 
amino acid polymorphism in the model. We typically perform >10,000 
permutations. If the observed improvement using the actual data is sig-
nificantly larger than the improvements using these permutations, we 
can infer that an amino acid polymorphism is driving the signal, instead 
of observing the ‘synthetic’ association in which the effect of the causal 
amino acid on a trait propagates to the marginal association statistics 
of the noncausal HLA allele merely in LD with the causal amino acid.

Conditional haplotype tests to define a risk sequence of amino 
acids. Defining the exact stretches of HLA amino acid sequences driv-
ing the association with disease allows us to understand the mechanism 
by which amino acid change affects disease risk23. Importantly, to 
model combinations of positions, we must use phased genotyping 
information, rather than encoding each position separately. We per-
form a conditional haplotype test, where we combine the imputation 
results of both two-field alleles and amino acid polymorphisms to 
obtain phased information. We start from the most significant posi-
tion in the amino acid sequence on the basis of the omnibus test we 
described in the previous section. If there are M possible amino acid 
residues at this position, we can group all possible two-field alleles 
for this HLA gene into M groups on the basis of the amino acid residue 
property at our selected position (Fig. 6a). Recall that each two-field 
allele at a given HLA gene corresponds to a unique sequence of amino 
acids in this gene. In the same way as we did in the omnibus test on the 
basis of the M amino acid residues, we can estimate the effect of each of 
the M groups using a logistic regression model (including covariates, 
as described above). We assess the improvement in model fit over a 
reduced model without including those M groups by the delta deviance 
(sum of squares) using an F-test with M-1 degrees of freedom and derive 
the statistical significance of the improvement.

Fullmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i +

M−1
∑
m=1

βmGrm,i

Reducedmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i

where Grm,i is the sum of the dosage of two-field alleles from a group m, 
explained by the mth amino acid residue. We note that we recommend 
removing any individuals that do not have two two-field alleles for a 
given gene, as we explained in ‘Postimputation QC’.
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Once we define the most significant individual amino acid posi-
tion at a given HLA gene on the basis of the statistical significance of 
improvement, we next seek to identify which amino acid position other 
than this significant position best improves the model over the model 
only including this significant position (Fig. 6b). Let x be the most sig-
nificant position in the primary analysis, which has X possible amino 
acid residues. We sequentially test each amino acid position (z) other 
than x, to ask whether haplotypes defined by the amino acid combina-
tion of positions x and z (z ≠ x) explain the disease risk more than those 
defined only by the position x. To do so, we recategorize all two-field 
alleles at this HLA gene into Z groups, where Z is the total number of 
observed haplotypes defined by the amino acid positions x and z. The 
value of Z must be at least X if no new haplotypes are defined. We again 
assess the significance of the improvement in model fit of the full model 
(covariation at positions x and z) over the reduced model (variation at 

position x alone) by the delta deviance (sum of squares) using an F-test 
with (Z − X) degrees of freedom.

Fullmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i

+
Z−1
∑
n=1

βx+z,nGrx+z,n,i

Reducedmodel ∶ log (oddsi) = β0 +∑
k
βkxk,i +∑

l
βlPCl,i

+
X−1
∑
m=1

βx,mGrx,m,i

where Grx+z,n,i is the sum of the dosages of two-field alleles in a group n 
by a given combination of the amino acid residues at positions x and z.

HLA-DRB1*01:01
HLA-DRB1*01:02
HLA-DRB1*03:01
HLA-DRB1*04:01
HLA-DRB1*04:03
HLA-DRB1*04:05
HLA-DRB1*04:06
HLA-DRB1*04:07
HLA-DRB1*04:10
HLA-DRB1*07:01
HLA-DRB1*08:01
HLA-DRB1*08:02
HLA-DRB1*08:03
HLA-DRB1*09:01
HLA-DRB1*10:01
HLA-DRB1*11:01
HLA-DRB1*11:04
HLA-DRB1*11:06
HLA-DRB1*11:11
HLA-DRB1*11:13
HLA-DRB1*12:01
HLA-DRB1*12:02
HLA-DRB1*13:01
HLA-DRB1*13:02
HLA-DRB1*13:03
HLA-DRB1*14:01
HLA-DRB1*14:02
HLA-DRB1*14:05
HLA-DRB1*15:01
HLA-DRB1*15:02
HLA-DRB1*15:03
HLA-DRB1*16:02

+11

Six amino acid residues make six groups

01:01,01:02

04:01,04:03,04:05,04:06,04:07,04:10

07:01

09:01

15:01,15:02,15:03,16:02

16:02
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07:01
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01:01,01:02
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03:01,08:01,08:02,08:03,11:01,11:04,11:06,11:11,11:13,
12:01,12:02,13:01,13:02,13:03,14:01,14:02,14:05

First rounda b Second round
+71

Additional four amino acid residues make ten groups

RFLWQLKFECH
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RFLEYSTSECH
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RFLEQVKHECH
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DLLEQRRAAVD
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DLLEQRRAEVD
DLLEQRRAAVD
DLLEQRRAEVD
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DLLEQRRAAVD
DILEDRRGQVD
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DFLEDRRALVD
DILEDRRALVD
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Fig. 6 | Grouping of two-field alleles using the conditional haplotype test. 
a,b, An example illustration of the conditional haplotype test for the HLA-DRB1 
gene. In the first round of conditional haplotype test, (a), we group all two-field 
alleles (32 alleles in total) into six groups on the basis of the amino acid residues 
at position +11 and ask whether those groups significantly explain the disease 
risk by using the omnibus test. In the second round of conditional haplotype test 

(b; position +71 as an example), we group the two-field alleles into ten groups on 
the basis of the amino acid residues at positions +11 and +71. Then, we ask whether 
the full model with those ten groups explains the disease risk better than the 
reduced model with the six groups that we defined in the first round by the delta 
deviance using an F-test.
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Thus, we define the next most significant amino acid position 
which additionally and independently explains the disease risk from 
the position x. If the model improvement in this second round is statis-
tically significant, we iterate the same analyses to identify amino acid 
position(s) other than the previously identified positions that best 
improve the model over the model including those previous positions, 
until we obtain no further significant improvement from any of the 
remaining positions.

Tests for nonadditivity. The dosage effect of HLA (having one copy or 
two copies of a given HLA allele) on disease risk is not purely additive 
in infectious diseases and autoimmune diseases70–78. All the analyses 

we have described above assume the additive risk model, in which the 
risk (i.e., log(OR)) for acquiring a disease due to carrying one copy 
of the allele (heterozygous state) is half the risk (log(OR)) conferred 
by carrying two copies (homozygous state). A nonadditive effect 
represents a deviation from this linear relationship between the 
dosage and the risk (Fig. 7a). For instance, a dominant effect might 
be indicated when the effect of carrying one copy is more than half 
the effect of carrying two copies. A biological explanation for such 
a dominant effect might be that (1) having one copy is enough to 
express the MHC variant with the disease-relevant antigen-binding 
properties on the cell surface, or that (2) there are synergistic inter-
actions with another HLA allele at the same locus. Lenz et al.77,79 
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Fig. 7 | Nonadditive test and multitrait analysis. a, Schematic illustrations of 
the additive and nonadditive models using the log odds ratio (log(OR)) according 
to the dosage of the genotype of interest. a denotes the purely additive effect 
by having one copy of the disease or trait-associated allele, and d denotes any 
departure from additivity for a heterozygous genotype. b, A logistic regression 

model to assess both the additive and nonadditive effect of the allele j (see main 
text for details). c, Multitrait analysis using a multiple linear regression model to 
test the association between the multidimensional phenotype Y and the amino 
acid polymorphism.
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showed that such nonadditive effects are pervasive in a spectrum 
of autoimmune diseases.

To test for the nonadditive effect, we construct a logistic regres-
sion model that captures both additive and nonadditive contributions 
of the allele to the disease risk (Fig. 7b) (refs. 77,80). We first define 
the additive term xi,j as either the best-guess genotype or the dosage 
genotype of allele j in an individual i that we are interested in.

xi,j = {
thebest guess genotypeof the allele j in an individual i ∶ {0, 1, 2}

thedosagegenotypeof the allele j in an individual i ∶ 0 ≤ xi,j ≤ 2

We next define the nonadditive term δi,j as the heterozygous status 
of the allele j in an individual i, which should capture any deviation of 
the effect from the additivity.

δi,j = {
1 if andonly if xi,j = 1,0otherwise ∶ {0, 1}

1 − abs (1 − xi,j) ∶ 0 ≤ δi,j ≤ 2

Using those two terms xi, j and δi, j, we construct a full model by 
including both the additive and nonadditive term with covariates, 
and a reduced model including only the additive term with covariates.

Fullmodel ∶ log (oddsi) = β0 + ajxi,j + djδi,j +∑
k
βkxk,i +∑

l
βlPCl,i

Reducedmodel ∶ log (oddsi) = β0 + ajxi,j +∑
k
βkxk,i +∑

l
βlPCl,i

where aj denotes an additive effect and dj denotes a nonadditive (domi-
nance if positive) effect.

We finally assess the significance of the improvement in model fit 
of the full model over the reduced model by the delta deviance (sum 
of squares) using an F-test.

Tests for interactions among HLA alleles. Once we identify an allele 
harboring a possible nonadditive effect, we may also be interested in 
understanding whether this is due to an interaction effect between the 
identified allele and the other alleles at the same HLA locus. In other 
situations, we may want to assess an interaction effect between a pair 
of alleles of functional interest. If the disease risk from a combina-
tion of those two alleles deviates from the expected disease risk by 
multiplying the disease risk (i.e., adding the log(OR)) of each of the 
two alleles), that combination can be regarded as having an interac-
tion effect. To test this hypothesis, we construct a reduced model 
that only includes an additive term for each of the two alleles, and a 
full model that includes an interaction term between the two alleles 
in addition to the additive term for each of the two alleles. Let xi,j be 
the dosage genotype of the allele j in a given individual i nominated 
by a significant nonadditive test, and let xi,h be the dosage genotype of 
the other allele h (h ≠ j) in an individual i to be tested for an interaction 
effect with the allele j.

Fullmodel ∶ log (oddsi) = β0 + ajxi,j + ahxi,h + ϕj,hxi,jxi,h
+ ∑

k
βkxk,i +∑

l
βlPCl,i

Reducedmodel ∶ log (oddsi) = β0 + ajxi,j + ahxi,h +∑
k
βkxk,i

+ ∑
l
βlPCl,i

where ϕj,h is the effect size of the interaction between the alleles j and h. 
We again assess the significance of the improvement in model fit in the 

full model over reduced model by the delta deviance (sum of squares) 
using an F-test. We note that the observed interaction effects can be 
spurious when the frequencies of the tested alleles are relatively low, 
which results in noisy effect estimate. We recommend performing 
conservative QC of the tested alleles on the basis of MAF (e.g., only 
considering alleles with an MAF >0.05 or 0.10), or performing permu-
tation analyses to test whether the observed statistics could occur by 
chance, in cases when the MAF is lower than these suggested thresholds.

We also note that HLA molecules form a complex three- 
dimensional structure to present specific antigens. The interaction 
analyses presented in this section in a regression framework may not 
be sufficient to capture higher-order interactions among the amino 
acid sequences encoded by the HLA81. Indeed, recent studies use a 
deep-learning framework for accurate prediction of antigen pres-
entation by specific HLA alleles82. Such effort might be necessary for 
phenotypic association with higher-order HLA structure in future, 
while substantially larger number of samples might also be necessary 
to achieve this goal.

HLA evolutionary allele divergence. A potential source for nonaddi-
tive interaction effects among HLA alleles is the extent to which their 
encoded HLA molecule variants differ functionally (i.e., in their bound 
antigen repertoires). Since HLA genes are generally co-dominantly 
expressed, both HLA variants of a heterozygous individual are pre-
senting antigens at the cell surface. If two HLA alleles are very similar 
in their sequence, their encoded HLA molecules on average will bind 
similar sets of antigens and thus exhibit a substantial overlap in their 
presented antigen repertoires, while the opposite will be true for two 
alleles with very divergent sequences83. The concept that carrying 
two divergent HLA alleles will allow HLA presentation of a wider range 
of antigens, and by extension increase the likelihood of pathogen 
detection by the adaptive immune system, has been termed diver-
gent allele advantage, as an extension of the classical heterozygote 
advantage84,85. Divergent allele advantage has already been shown 
to drive HLA allele frequencies and contribute to human immuno-
deficiency virus control78,83, but might have broader implications 
in HLA-mediated complex diseases. For instance, it was shown that 
cancer patients whose HLA class I alleles exhibit a higher HLA evolu-
tionary divergence respond better to cancer immunotherapy, possibly 
because a greater number of mutated neoantigens are presented by 
their HLA86. The HLA evolutionary divergence score between two HLA 
alleles at a given HLA locus is based on the Grantham distance between 
their amino acid sequences, and is applicable to both HLA class I and 
class II alleles. It can be calculated using publicly available scripts83, 
and its effect on a given phenotype can then be estimated by adding 
it as a quantitative parameter in a regression model and testing for 
improvement in model fit with an F-test.

Multitrait analysis. Our group recently showed that the amino acid 
frequencies at complementarity-determining region 3 (CDR3) of the 
T-cell receptor (TCR) are highly influenced by HLA alleles and amino 
acids, possibly through thymic selection7. This type of analysis is an 
extension of the analyses we described in the previous sections. One 
notable difference is that the response variable represents not a single 
trait (e.g., a disease) but multiple traits: in this case the frequencies of 
each amino acid residue at the position of interest within CDR3, which 
we call cdr3–QTL analysis. We test which amino acid position in HLA 
has a significant association with those frequencies in CDR3 overall, 
using an extended framework of the omnibus test that we described 
above (Fig. 7c).

In this case, the response variable is not a vector of one pheno-
type, but a matrix (multidimensional vector) of frequency phenotypes 
where each row represents an individual and each column represents 
a frequency of a given amino acid residue at a given position of CDR3. 
Let Y be this frequency matrix with N rows and M − 1 columns, and Yi be 
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the M − 1 frequency phenotypes in an individual i. N denotes the num-
ber of individuals, and M denotes the number of observed amino acid 
residues at this position in TCR. We use a multivariate multiple linear 
regression model to test the association between Y and HLA alleles or 
amino acid positions of interest.

Fullmodel ∶ Yi = θ +∑
k
βkxk,i +∑

l
βlPCl,i +

L−1
∑
m=1

βmmmAMm,i

Reducedmodel ∶ Yi = θ +∑
k
βkxk,i +∑

l
βlPCl,i

where θ is an M-dimensional parameter that represents the inter-
cept, L is the total number of observed amino acid polymorphisms at  
this position in HLA, AMm,i and βm are the amino acid dosage of the  
residue m in an individual i and the M-dimensional effect sizes for  
the residue m on Y, respectively.

We assess the significance of the improvement in model fit 
between the full model and reduced model with the multivariate analy-
sis of variance test for quantitative traits. As spurious associations 
again arise when the frequencies of the tested alleles are relatively 
low7, we recommend performing permutation analyses to confirm the 
calibration of the test statistics.

By using this multitrait framework, we can assess any combina-
tion of multiple phenotypes. One potential application is to inves-
tigate multiple disease phenotypes by using rich phenotype data in 
biobanks. This framework could disentangle pleiotropic HLA alleles 
that simultaneously affect a spectrum of diseases of interest. Another 
interesting application might be using multiple molecular phenotypes 
such as expression of multiple genes or proteins, and a combination of 
multiple modalities (e.g., gene expression and chromatin accessibility) 
to determine how variation in the HLA alleles affects transcription and 
translation, or gene expression and epigenetic changes. We can also 
assess these phenotypes across multiple cell types (e.g., expression of 
a gene in T cells, B cells, monocytes, etc.) to investigate the effect of the 
HLA alleles on gene expression across multiple cell types.

Concluding remarks
Given the increasing number of associations between the HLA region 
and human complex traits that have been identified through large-scale 
GWAS, accurate imputation and fine mapping of the causal HLA alleles 
and amino acids will continue to be important as the data size con-
tinues to grow. We present a strategy that can lead investigators to 
fine-mapped alleles. By leveraging HLA fine-mapped alleles with the 
variants outside of MHC region, it may be possible to construct an effi-
cient genetic risk score to stratify people on the basis of their genetic 
risk for those diseases. We have publicized this imputation pipeline 
through the user-friendly MIS, which hosts the HLA reference panel 
representing multiple populations and enables web-based automatic 
HLA imputation for global cohorts. Another advantage of the imple-
mentation using Minimac4 (ref. 22) is the computational efficiency: 
HLA imputation of a cohort of millions of individuals is computation-
ally scalable by EAGLE and minimac4 (for example, for a cohort of size 
20,000, HLA imputation runs in 6 h with 10 central processing units; for 
benchmarking with different algorithms and platforms, see Extended 
Data Fig. 4). We hope this tutorial will empower the field of statistical 
genetics to more comprehensively define the effect of HLA variation 
in a spectrum of human diseases.

Despite the well-established performance of our approach, we 
can still improve our HLA imputation reference panel further. First, we 
note that the currently available HLA reference panels are still under-
represented for African populations and South Asian populations. 
We need to expand the reference panel to better represent global 
populations. Emerging biobanks for these populations87,88 could be a 

potential resource to this end. Similarly, the scope of genes included in 
the panel can be expanded to include, for example, nonclassical HLA 
genes (e.g., HLA-DO and HLA-DM) and C4 copy number. Second, the 
imputation accuracy is currently satisfactory in association testing 
but not yet as high as the gold-standard HLA typing. We aim to further 
improve the accuracy by updating the HLA calls and scaffold vari-
ants used in the reference panel as well as improving the imputation 
algorithms.

While fine mapping of HLA alleles has provided deeper insights 
into disease pathogenesis, we need more mechanistic and structural 
understanding of how these alleles contribute to disease biology. Why 
do certain HLA alleles cause a diverse spectrum of diseases? How do 
those alleles characterize our inherited composition of T-cell reper-
toires? What are the auto-antigens that are being presented by those 
alleles? Recent advances in experimental and computational mod-
eling of protein structures and complexes89,90 offer promise. We need 
both experimental and computational approaches to answer all these 
important questions.

Data availability
We have summarized the availability of HLA imputation reference pan-
els in Table 2. Our HLA imputation pipeline using a multi-ancestry HLA 
reference panel is publicly available at the MIS (https://imputation-
server.sph.umich.edu/index.html).

Code availability
The computational scripts and instructions for their usage related to 
this tutorial are available at https://github.com/immunogenomics/
HLA_analyses_tutorial (https://doi.org/10.5281/zenodo.7373439).
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Extended Data Fig. 1 | The linkage disequilibrium (LD) patterns across the 
extended MHC region. A heatmap of LD r2 for pairwise variants across the 
extended MHC region. We used biallelic markers in our HLA reference panel 
within European populations and calculated LD r2 values for exhaustive pairs 

of these variants. The variants are ordered (both on x-axis and y-axis) and 
annotated by HLA gene names (on x-axis) based on their genomic coordinates 
on chromosome 6. The bottom plot shows the detailed LD pattern in the class II 
region.
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Extended Data Fig. 2 | Schematic illustration of method used to construct 
scaffold variants within multi-ancestry HLA reference panel. We extracted 
SNP variants within MHC region in 1000 Genomes Project (1KG) samples. We 
only retained variants that were included in major genotyping arrays (Illumina 
Multi-Ethnic Genotyping Array, Global Screening Array, OmniExpressExome, 

and Human Core Exome), colored in teal. We then quality controlled each of the 
participating cohorts’ MHC SNPs separately, retained overlapping variants with 
selected SNPs in 1KG, and cross-imputed each cohort’s missing variants by using 
1KG genotypes. We finally concatenate all cohorts together to construct scaffold 
variants for multi-ancestry reference panel.
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Extended Data Fig. 3 | Michigan Imputation Server. Example usage of Michigan Imputation Server for HLA imputation at https://imputationserver.sph.umich.edu/
index.html.
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Extended Data Fig. 4 | The runtime benchmark for HLA imputation using 
different platforms. a. For SNP2HLA, we used BEAGLE4 for phasing and 
imputation algorithm (Luo et al. Nat Genet. 2021) with using 10 CPUs. For 
Minmac4, we used SHAPEIT2 as phasing algorithm with samples <10,000 and 

EAGLE2 as phasing algorithm with samples > 5,000 as we described in the 
manuscript both with using 10 CPUs. b. For Michigan Imputation Server, we 
uploaded the unphased genotype data and standard imputation pipeline was 
performed with default setting (with 1CPU).
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