
Letters
https://doi.org/10.1038/s41591-020-0785-8

1Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. 2Department of Statistical Genetics, Osaka 
University Graduate School of Medicine, Suita, Japan. 3Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 
Tokyo, Japan. 4Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 5Program in Medical and Population Genetics, 
Broad Institute of Harvard and MIT, Cambridge, MA, USA. 6Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 
USA. 7Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 8Institute for Molecular Medicine Finland (FIMM), University 
of Helsinki, Helsinki, Finland. 9Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan. 
10Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan. 11Laboratory of Genome Technology, 
Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 12RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. 13Department 
of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. 14Division of Molecular 
Pathology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan. 15Laboratory of Complex Trait Genomics, Department of Computational 
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. 16Laboratory of Statistical Immunology, 
Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan. 17Integrated Frontier Research for Medical Science Division, Institute 
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan. 18These authors contributed equally: Saori Sakaue, Masahiro Kanai. 
✉e-mail: yokada@sg.med.osaka-u.ac.jp

While polygenic risk scores (PRSs) are poised to be trans-
lated into clinical practice through prediction of inborn  
health risks1, a strategy to utilize genetics to prioritize modi-
fiable risk factors driving heath outcome is warranted2. To  
this end, we investigated the association of the genetic 
susceptibility to complex traits with human lifespan in col-
laboration with three worldwide biobanks (ntotal = 675,898;  
BioBank Japan (n = 179,066), UK Biobank (n = 361,194) and 
FinnGen (n = 135,638)). In contrast to observational stud-
ies, in which discerning the cause-and-effect can be difficult, 
PRSs could help to identify the driver biomarkers affect-
ing human lifespan. A high systolic blood pressure PRS was 
trans-ethnically associated with a shorter lifespan (hazard 
ratio = 1.03[1.02–1.04], Pmeta = 3.9 × 10−13) and parental lifes-
pan (hazard ratio = 1.06[1.06–1.07], P = 2.0 × 10−86). The 
obesity PRS showed distinct effects on lifespan in Japanese 
and European individuals (Pheterogeneity = 9.5 × 10−8 for BMI). 
The causal effect of blood pressure and obesity on lifespan 
was further supported by Mendelian randomization studies. 
Beyond genotype–phenotype associations, our trans-biobank 
study offers a new value of PRSs in prioritization of risk fac-
tors that could be potential targets of medical treatment to 
improve population health.

Human disease risk can be explained by the combination of 
genetic susceptibility, environmental exposure and lifestyle3. PRSs 
have demonstrated the predictive ability to identify those with a 
higher inherited risk of a disease onset1. An increase in statisti-
cal power and ethnic diversity in genetic studies—accelerated 
by nationwide biobanks—have been instrumental in the predic-
tion accuracy4–7. Risk stratification based on PRSs is one way to  

improve population health through targeted prevention. 
Nevertheless, the genetic risk itself cannot be modified. The 
identification of risk factors that affect not only disease onset 
but long-term health outcomes would contribute to population  
health, because these factors can potentially be modified through 
medical treatment8,9.

While observational studies have identified risk factors corre-
lated with health outcomes (for example, low-density lipoprotein 
(LDL) cholesterol levels and myocardial infarction), the major chal-
lenge lies in inferring the cause-and-effect direction. A randomized 
controlled trial (RCT) is considered as the gold standard to infer 
the effect of the exposure on the outcome10. If a medical treatment 
to decrease LDL cholesterol leads to a decreased incidence of myo-
cardial infarction, we could estimate that high LDL cholesterol 
causes myocardial infarction. RCTs, however, require a consider-
able amount of human and economic resources, and are not always 
ethically feasible.

To address this, here we utilized biomarker PRSs as an instru-
ment to investigate the driving effect of these biomarkers on 
human lifespan, a health outcome of extreme importance, since 
genetic susceptibility is less affected by acquired confounding fac-
tors. A series of association studies of biomarker PRSs with lifes-
pan can prioritize risk factors that drive mortality in the current 
generation. Furthermore, deep phenotype data, such as comor-
bidities and causes of deaths, can help to identify target individuals 
who could most benefit from the modification of these risk factors.  
In this context, we collaborated with three nationwide biobanks  
(ntotal = 675,898) to uncover the monitorable and modifiable bio-
markers affecting human lifespan across ancestries, on an unprec-
edented scale and without any clinical intervention.
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An overview of our study is presented in Fig. 1. We analyzed 
three nationwide biobanks (BioBank Japan (BBJ), UK Biobank 
(UKB) and FinnGen; Fig. 1a) to elucidate clinical biomarkers 
affecting lifespan. The BBJ is a hospital-based cohort consist-
ing of 200,000 participants in Japan, with deep clinical phenotype 
data11–13 (Supplementary Table 1a). We analyzed 31,403 deaths  
during a mean follow-up period of 7.44 yr. The UKB is a population-
based cohort consisting of ~500,000 people in the United Kingdom 
(Supplementary Table 1b)14. We analyzed 10,483 deaths during 
a mean follow-up period of 6.97 yr. FinnGen is a public–private  
partnership project combining genotype data from Finnish bio-
banks and health record data from health registries (Supplementary 
Table 1c). We analyzed 11,058 deaths among 135,638 participants 
in this study.

We first investigated clinical biomarkers correlated with lifes-
pan in BBJ and UKB as an observational study (Fig. 1b). Next, we 
performed an association test of the PRSs of these biomarkers with 
lifespan in BBJ, to elucidate the drivers affecting lifespan. We rep-
licated these associations in UKB and FinnGen, and finally meta-
analyzed them across the three cohorts. The method was validated 
by the Mendelian randomization (MR) study.

To identify biomarkers correlated with lifespan, we associated  
the measured biomarker values with lifespan (that is, age at death)  
in BBJ. After the Bonferroni correction for multiple testing, 
38/45 biomarkers showed a significant association (Fig. 2a and 
Supplementary Tables 2a and 3). The top traits associated with a 
shorter lifespan were low albumin, high γ-glutamyl transpeptidase 
and increased height (a hazard ratio (HR) of per s.d. increase in 
mortality = 0.80[0.79–0.81], 1.16[1.15–1.17] and 1.3[1.27–1.32]; 
P < 1 × 10−185), consistent with previous epidemiological stud-
ies15–18. To investigate whether these associations are shared 
between ethnicities, we performed an observational study using 
20 biomarkers in UKB (Extended Data Fig. 1). We observed sig-
nificant associations in 17/20 traits. Of note, 14 among the 15 traits 
with significant associations in BBJ showed directionally concor-
dant associations in UKB. The only discordant trait was body mass 
index (BMI). While a lower BMI was associated with a shorter 
lifespan in BBJ, a higher BMI was associated with a shorter lifes-
pan in UKB. This discordance could be attributed to differences in 
the recruitment policy (that is, hospital-based in BBJ and healthy 
volunteers in UKB) or differences in the health burden of obesity 
between ethnicities. Importantly, these observational studies could 

BBJ UKB FinnGen

Subgroup GWASs

Meta-analysis and PRS derivation

Meta-analysis PRS

Survival analysis and meta-analysis

Lifespan ~ PRS + covariates

Meta-analysis

Subgroup GWASs

Meta-analysis and PRS derivation

Survival analysis and meta-analysis

Lifespan ~ PRS + covariates

Meta-analysis

When individual-level data available;

Otherwise;

Trans-ethnic meta-analysis

Lifespan ~ PRS + covariates
Parental lifespan ~ PRS + covariates

PRS from public GWAS and survival analysis

When UKB sumstats available;

Otherwise;

Lifespan ~ PRS + covariates

PRS from public GWAS and survival analysis

Japan

UK

Finland

UKB-based PRS construction

UKB whole GWAS

Lifespan ~ PRS + covariates

BBJ

UKB

FinnGen

n = 179,066

n = 361,194

n = 135,638

(i) Observational study

(ii) Association of PRS with lifespan

B
io

m
ar

ke
r

Li
fe

sp
an

G
en

ot
yp

e

B
io

m
ar

ke
r

Li
fe

sp
an

G
en

ot
yp

e

Li
fe

sp
an

G
en

ot
yp

e

Lifespan Biomarker

Lifespan PRS

Genotype

a b

c

(iii) MR study

˄Σm
i = 1 bxi

Fig. 1 | An overview of the study design. a, The geographical locations of Japan, the United Kingdom and Finland. b, We analyzed the biomarker, lifespan 
and genotype information in each cohort. We performed (i) an observational study in BBJ and UKB, where we evaluated the association of biomarkers with 
lifespan, (ii) an association study of biomarker PRSs (that is, genetic susceptibility) with lifespan in BBJ, UKB and FinnGen, and (iii) an MR study to validate 
the findings in (ii). c, The design of the association study of biomarker PRSs with lifespan. In BBJ, we randomly split the entire cohort into ten subgroups 
and performed GWASs. We then performed a tenfold LOGO meta-analysis, derived the PRSs in one remaining subgroup, and associated them with 
lifespan. We meta-analyzed the association statistics from the ten subgroups. In UKB, when individual-level phenotype data were available, we adopted 
the LOGO approach. Otherwise, we derived the PRSs by referring to public GWAS statistics, and associated the biomarker PRSs with lifespan.  
As a secondary analysis, we associated the PRSs with parental lifespan. In FinnGen, we derived the PRSs from UKB GWAS summary statistics or public large-
scale GWAS statistics, and associated the biomarker PRSs with lifespan. Finally, we performed a trans-ethnic meta-analysis of PRS–lifespan associations.
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Fig. 2 | The Hrs for the age at death, according to clinical phenotypes and according to the PrSs and their correlations in BBJ. a,b, The adjusted HRs 
from Cox proportional hazards models for lifespan, according to clinical phenotypes (a) and according to the PRSs for the clinical phenotypes (b) in 
BBJ (n = 179,066). The boxes indicate the point estimates, and the horizontal bars indicate the 95% confidence interval. The blue (a) and red (b) boxes 
indicate the nominal significance (P < 0.05), and the white-filled boxes indicate the statistical significance after correcting for multiple testing by the 
Bonferroni method. c, A co-plot of the coefficients from the Cox proportional hazards models for lifespan according to the PRS (x axis) and those according 
to measured clinical phenotypes (y axis). Pearson’s correlation, r, and the P value between them are also displayed (ntrait = 45).
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not discern whether the variations in biomarkers caused the varia-
tions in lifespan.

To prioritize the drivers affecting lifespan, we utilized genetics.  
The PRS aims to estimate the genetic predisposition towards the 
investigated trait3 and thus is less susceptible to the acquired con-
founders19,20. To determine which biomarker drives the survival 
outcome, we assessed the association of biomarker PRSs with lifes-
pan. In calculating PRSs in BBJ, we adopted a tenfold leave-one-
group-out (LOGO) meta-analysis method. Briefly, we split the 
entire cohort into ten subgroups to perform genome-wide associa-
tion studies (GWASs), meta-analyzed nine GWASs (Supplementary 
Table 4) and constructed PRSs using a clumping and thresholding 
method. We then associated the biomarker PRSs with lifespan in the 
one withheld subgroup, and the association statistics were further 
meta-analyzed across the ten subgroups (Fig. 1c). Thus, we main-
tained the sample size in GWASs at nine-tenths of the entire cohort 
and validated the PRSs using all of the individuals.

Among the 45 biomarkers, high PRSs of blood-pressure-related 
traits (systolic blood pressure (sBP), diastolic blood pressure (dBP) 
and mean arterial pressure (MAP)) were significantly associated 
with a shorter lifespan (Fig. 2b and Supplementary Table 2b). In the 
sBP, where the PRS showed the strongest association (HR of per s.d. 
PRS increase in mortality = 1.03[1.02–1.04], P = 1.4 × 10−7), individ-
uals with the highest PRS (the top quintile) had a 1.46-fold higher 
risk of hypertension when compared with those with the lowest PRS 
(the bottom quintile; P = 1.4 × 10−84), and were associated with an 
increased risk of mortality (Fig. 3b, top). The measured sBP showed 
U-shaped associations, with those with the lowest and the highest 
sBP both harboring an increased risk of mortality (Fig. 3a, top, and 
Extended Data Fig. 2). The PRS disentangled the dose-dependent 
association of the genetic risk of hypertension with a shorter lifes-
pan, while the association of a low measured sBP with high mor-
tality might have been reverse causation21. In contrast, although a 
measured low albumin level showed the strongest association with 
a shorter lifespan (Fig. 3a bottom), the albumin PRS was not associ-
ated with lifespan (HR = 0.99[0.98–1.00], P = 0.40, Fig. 3b bottom), 
implying that a decline in general health might have resulted in both 
high mortality and decreased albumin values. Overall, there was no 
correlation between the association coefficients of measured bio-
markers with lifespan and those of biomarker PRSs with lifespan 
(r = −0.16, P = 0.29; Fig. 2c).

We further investigated the cause-specific mortality that pro-
pelled the association with the sBP PRS. Among the four most 
frequent causes of death in Japan (Methods)12, a high sBP PRS 
was significantly associated with death from cardiovascular dis-
ease (HR = 1.04[1.01–1.08], P = 0.0064) and nominally associated 
with death from cerebrovascular disease (HR = 1.05[1.01–1.10], 
P = 0.024). A comorbidity-stratified analysis revealed that indi-
viduals affected by type 2 diabetes, cerebral infarction or dyslipid-
emia strongly drove the association of the sBP PRS with lifespan 
(HR = 1.05[1.03–1.07], 1.06[1.03–1.09] and 1.05[1.02–1.08]; 
P = 2.6 × 10−5, 1.9 × 10−4 and 4.0 × 10−3). These results recapitulated 
epidemiological knowledge that hypertension is one of the strongest 
risk factors of mortality among patients with cardiovascular22, cere-
brovascular23,24 and metabolic diseases25.

We finally investigated the interaction between the genetic sus-
ceptibility of hypertension and lifestyle. While various lifestyles had 
a strong impact on lifespan (Supplementary Table 5), none of them 
showed a significant interaction with the sBP PRS (Supplementary 
Table 6). For example, the beneficial effect of smoking cessation on 
survival was not significantly different among those with the high-
est PRS (Δ10-year mortality = −0.050) or those with the lowest PRS 
(Δ10-year mortality = −0.049; Pinteraction = 0.63).

To replicate these associations in individuals of European 
ancestry in UKB (n = 361,194) and FinnGen (n = 135,638), we 
constructed biomarker PRSs by the tenfold LOGO meta-analysis 

approach when the individual-level phenotype was available (20/33 
traits in UKB; Supplementary Tables 7 and 8), or otherwise by 
using independent large-scale GWAS statistics of European ances-
try (13/33 traits in UKB and 33 traits in FinnGen; Supplementary 
Table 9). We then associated the PRSs with lifespan, and finally 
performed a trans-ethnic meta-analysis across the three biobanks 
(Supplementary Table 10). In UKB and FinnGen, we confirmed 
the directional consistency of the association of a high sBP PRS 
with a shorter lifespan (HR = 1.02[1.00–1.04], P = 0.083 in UKB  
(Fig. 4b); HR = 1.03[1.01–1.05], P = 0.0031 in FinnGen (Fig. 4c)).  
A fixed-effect meta-analysis revealed a trans-ethnically robust effect 
of the sBP PRS on lifespan (HR = 1.03[1.02–1.04], P = 3.9 × 10−13; 
Fig. 4d). A secondary analysis using parental lifespan data in UKB, 
which offered a much larger statistical power, demonstrated that a 
high sBP PRS was also associated with a shorter parental lifespan 
(HR = 1.06[1.06–1.07], P = 2.0 × 10−86).

Interestingly, high PRSs of BMI and body weight (BW) were most 
significantly associated with a shorter lifespan in UKB and FinnGen 
(BMI: HR = 1.07[1.05–1.09] and 1.06[1.04–1.08]; P = 1.7 × 10−11 
and 1.5 × 10−8), while they showed much smaller effect sizes in 
BBJ (BMI: HR = 1.01[1.00–1.02], P = 0.094, Pheterogeneity = 9.5 × 10−8). 
A strong effect of obesity on mortality was shared between UKB 
and FinnGen, despite the different methods used for calculat-
ing PRSs (that is, LOGO in UKB and independent GWAS refer-
ral in FinnGen). The reason for the trans-ethnic heterogeneity 
was not attributed to the difference in heritability or the variance 
explained by PRSs (Supplementary Tables 4, 8, 11 and 12). The 
measured BMI mean and s.d. were larger in European individu-
als (mean = 23.3, 27.4 and 27.2; s.d. = 3.7, 4.8 and 4.1 in BBJ, UKB 
and FinnGen), as shown in World Health Organization data (22.8 
[22.5–23.2], 27.5[27.2–27.8] and 26.6[26.1–27.1] in Japan, the 
United Kingdom and Finland; http://apps.who.int/gho/data/view.
main.BMIMEANADULTCv?lang=en). Along with the report that 
the mortality in obese individuals was higher in European individu-
als than in East Asian individuals26, the observed heterogeneous 
effect might partly explain the ethnic differences in the health bur-
den of obesity between Japanese and European individuals, which 
warrants further trans-ethnic studies.

To determine what drives the association of the BMI PRS with 
lifespan in European individuals, we analyzed the cause-spe-
cific mortality and comorbidity data in UKB. The BMI PRS was 
most strongly associated with cerebrovascular death (HR = 1.12[ 
1.08–1.17], P = 3.1 × 10−8). A comorbidity-stratified analysis 
revealed that the effect of the BMI PRS on mortality was stron-
gest among those with unstable angina (HR = 1.17[1.05–1.30], 
P = 3.1 × 10−3). These analyses pinpointed the target individuals 
who would benefit most from the modification of obesity. We also 
investigated the interaction between the BMI PRS and lifestyle in 
UKB. Again, no lifestyle factors showed significant interaction 
(Pinteraction > 0.05). Taken together with the results of the BBJ studies, 
this suggests that even people with a high genetic burden of hyper-
tension or obesity could benefit from lifestyle modifications such as 
smoking cessation and regular exercise.

Trans-ethnic meta-analysis identified additional significant 
biomarker PRSs after the Bonferroni correction for multiple test-
ing (Pmeta < 1.5 × 10−3; that is, total cholesterol, LDL cholesterol,  
height and platelet count). The genetic burden of increased cho-
lesterol was associated with a shorter lifespan, which supported  
the observational studies demonstrating the causal roles of choles-
terol on worse health outcomes27. Increased height was indicated as 
a risk for cancers and cancer-related mortality17,18. A lower plate-
let count was reported as associated with increased mortality in 
European individuals28.

To investigate sex-differentiated effects, we performed a sex-
stratified association study of PRSs with lifespan (Extended Data 
Fig. 3). A sex-stratified trans-ethnic meta-analysis revealed that the 
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effect of the dBP PRS on lifespan, which was the largest among 33 
traits in the primary meta-analysis, was significantly larger in males 
than in females (HRmale = 1.05[1.04–1.06], HRfemale = 1.02[1.00–
1.03], Pheterogeneity = 0.0013; Extended Data Fig. 3d). This was in line 
with epidemiological studies showing that the mortality or cardio-
vascular events caused by hypertension were higher for males than 
for females29,30.

Finally, we conducted a trans-ethnic MR study for validation. 
Two-sample MR revealed the following: significant causal effects of 
sBP and MAP on lifespan in BBJ; significant causal effects of BMI 
and BW on lifespan in UKB and FinnGen; and that a trans-ethnic 
meta-analysis strengthened their significance (that is, BMI, BW, 
sBP and MAP; βcausal = 0.17, 0.17, 0.15 and 0.15; Pmeta = 1.6 × 10−11, 
9.6 × 10−11, 1.6 × 10−4 and 8.2 × 10−4; Extended Data Fig. 4). Despite 
the limitations in both methods (PRS and MR), such as pleiotropy 
and assumptions on instrumental variables31,32, these consistent 
results complement each other and support the robustness of our 
findings in identifying driver biomarkers affecting lifespan.

While we agree that it is time to consider the clinical applica-
tion of PRSs to accelerate health communication33 and targeted 
prevention34, the inherited genetic risks cannot be modified. Here 
we showed the novel value of PRSs in identifying modifiable risk 
factors driving health outcomes, which could be potential targets 
of medical treatment. We showed a global burden of hypertension 

and obesity as drivers of mortality. Although the magnitude of  
effect sizes in the association of PRSs with lifespan was relatively 
small, the magnitude of effect sizes in which the trait itself (for 
example, BP or obesity) affects lifespan, or in which the modifica-
tion of the trait (for example, proper BP management or healthy 
diet) improves the health outcome, would be expected to be larger 
in terms of population health.

To improve population health, we need to prioritize the health 
issues. In observational studies, it is challenging to infer the 
cause-and-effect direction. While RCTs could provide evidence 
on causality, they are not always feasible, which hampers their  
application to diverse phenotypes. Our approach, which leverages 
genetic and phenotypic data already existing in biobanks, would 
have the potential to support the clinical evidence, especially when 
it is controversial, or to identify candidate risk factors to bring into 
RCTs. Further, in-depth analyses on cause-specific mortality and 
comorbidities pinpointed target individuals who could most ben-
efit from the modification of the risk factors. These insights would 
be useful in designing efficient RCTs or providing individualized 
medical evidence.

Our genetics-driven discovery was made possible by trans-
ethnic, large-scale and deep-phenotyped biobanks. The multi-
biobank collaboration provided: a trans-ancestry comparison as in 
the example of obesity; a large sample size, which was critical in  
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analyzing mortality data; the opportunity for replication, which sug-
gested generalizability despite the cohort-specific characteristics; 
the validation of our methodology; and the integration of cohort-
specific data, such as parental lifespan in UKB. Although the vari-
ants and their numbers constituting the PRSs were different among 
the three biobanks (Supplementary Tables 10–12), and only a small 
fraction was shared or tagged (r2 > 0.8) (Extended Data Fig. 5),  
we could show consistent associations across the cohorts and eth-
nicities. Given an ever-expanding amount of data in biobanks, our 
proof-of-concept approach would discover more actionable traits 
driving health outcomes on a global scale.

This study has potential limitations. First, the recruitment strat-
egy was different among the biobanks. We confirmed that the results 
from BBJ, a hospital-based cohort, were not confounded by the pro-
portion of patients with a specific disease group using sensitivity 
analyses (Extended Data Fig. 6). The coherent results across bio-
banks further mitigated concerns over potential biases. Second, the 
small variances explained by PRSs could have caused less significant 
associations with lifespan. Third, the polygenic effect that partially 

affects other traits (that is, pleiotropy) might have coexisted with 
the association of the PRS of a specific trait with lifespan. Fourth, 
there is currently no consensus on how to harmonize the P thresh-
old in calculating PRSs across cohorts. We set a fixed threshold of 
1 × 10−6 in trans-ethnic studies, because we could not always obtain 
the best P, which should be optimized to maximize the explained 
variance using individual-level data. We confirmed that association 
coefficients from the threshold of 1 × 10−6 were concordant with 
those from the best P (Methods). Last, the statistical power in our 
study handling lifespan was limited due to a relatively short follow-
up period, particularly in UKB, which is a recently launched pop-
ulation-based cohort. We complemented this point by secondarily 
analyzing parental lifespan in UKB. In the future, a larger number 
of mortality records with a longer follow-up period would provide 
us with an opportunity to further validate our results.

In conclusion, through trans-biobank collaboration, we iden-
tified hypertension and obesity as drivers affecting lifespan on 
a global scale. A comparison across different populations and 
the integration with deep phenotype data pinpointed target  
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individuals who would be expected to benefit most from the modi-
fication of these traits through adherence to a healthy lifestyle or 
medical treatment. With global biobanks’ efforts—enrolling indi-
viduals from diverse backgrounds and collecting granular pheno-
type data along with health outcomes—we have shown a potential 
application of genetics to improve population health by providing 
information on modifiable risk factors driving our health outcomes.
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Methods
Study populations, genotyping and imputation. BBJ. Clinical information and 
genotype data were obtained from the BBJ Project11,13, which is a prospective 
biobank that collaboratively collected DNA and serum samples from 12 medical 
institutions in Japan and recruited approximately 200,000 participants, mainly of 
Japanese ancestry, with a diagnosis of at least 1 of 47 diseases. Of them, 138,278 
participants were followed up for their health record after an initial visit, including 
disease onset, survival outcome and the cause of death if they died. All of the 
participants provided written informed consent approved by the ethics committees 
of the RIKEN Center for Integrative Medical Sciences, and the Institute of 
Medical Sciences at the University of Tokyo. Detailed participant information is 
summarized in Supplementary Table 1a.

We genotyped participants with the Illumina HumanOmniExpressExome 
BeadChip or a combination of the Illumina HumanOmniExpress and 
HumanExome BeadChips. The quality control of participants and genotypes was 
described elsewhere35. In this project, we analyzed 179,066 participants of Japanese 
ancestry as determined by the principal component analysis (PCA)-based sample 
selection criteria. The genotype data were further imputed with 1000 Genomes 
Project Phase 3 version 5 genotype data (n = 2,504) and Japanese whole-genome 
sequencing data (n = 1,037)35 using Minimac3 software. After the imputation, we 
excluded variants with an imputation quality of Rsq < 0.7 or those with a minor 
allele frequency (MAF) < 1%.

UKB. The UKB project is a population-based prospective cohort that recruited 
approximately 500,000 people aged between 40 and 69 yr from 2006 to 2010 from 
across the United Kingdom (summary in Supplementary Table 1b; http://www.
ukbiobank.ac.uk). Deep phenotype data, such as electronic medical records, 
lifestyle indicators and bioassays, and genotype data were available for most of 
the participants. The participants are linked to a death registry, which provides 
the age and cause of death when they die. The genotyping was performed using 
either the Applied Biosystems UK BiLEVE Axiom Array or the Applied Biosystems 
UKB Axiom Array. The genotypes were further imputed using a combination 
of the Haplotype Reference Consortium, UK10K and 1000 Genomes Phase 3 
reference panels by IMPUTE4 software. The detailed characteristics of the cohort 
were extensively described elsewhere14. In this project, we analyzed 361,194 
individuals of white British genetic ancestry as determined by the PCA-based 
sample selection criteria (https://github.com/Nealelab/UK_Biobank_GWAS/blob/
master/ukb31063_eur_selection.R). We excluded variants with: INFO score ≤ 0.8; 
MAF ≤ 0.0001 (except for missense and protein-truncating variants annotated by 
the Variant Effect Predictor36, which were excluded if MAF ≤ 1 × 10−6); and Hardy–
Weinberg equilibrium P value ≤ 1 × 10−10. All of the analyses were conducted via 
application 31063.

FinnGen. FinnGen is a public–private partnership project combining genotype 
data from Finnish biobanks and digital health record data from Finnish 
health registries (https://www.finngen.fi/en). A list of FinnGen contributors is 
presented in Supplementary Notes. Six regional and three country-wide Finnish 
biobanks participate in FinnGen. Additionally, data from previously established 
population- and disease-based cohorts are utilized. Participants’ health outcomes 
are followed up by linking to the national health registries (1969–2016), which 
collect information from birth to death. We used the FinnGen release 3 data in this 
project, which consists of the genotype and phenotype data of 135,638 participants, 
excluding population outliers via PCA (summary in Supplementary Table 1c). 
The death information was retrieved from the national death registry. The study 
participants were genotyped with the FinnGen1 ThermoFisher array and previous 
cohorts were genotyped with various genotyping arrays. The genotype data were 
imputed using whole-genome sequencing data from 3,775 Finnish individuals by 
beagle4.1 software (https://faculty.washington.edu/browning/beagle/b4_1.html)37. 
After the imputation, we excluded variants with an imputation INFO score < 0.8 or 
MAF < 0.0001.

Observational study on the association of clinical biomarkers with lifespan. We 
used Cox proportional hazard models to test the association of clinical phenotypes 
with lifespan (that is, age at death) in BBJ as described elsewhere38. To obtain and 
compare the HRs across the traits, we scaled each trait to have zero mean and unit 
variance by Z-score transformation. The primary analyses included adjustment 
for sex, the 47-disease status and the top 20 principal components, which were 
supposed to account for possible confounders and population stratification. 
Additional summaries of clinical phenotypes and the number of samples without 
missing values are described in Supplementary Table 3. We next performed the 
same survival analyses in 20 clinical phenotypes, where individual-level phenotype 
data were available in UKB (Supplementary Table 7). We used Cox proportional 
hazards models to test the association of these clinical phenotypes with lifespan 
with an adjustment for sex and the top 20 principal components as covariates.

GWASs. BBJ. In BBJ, an independent reference GWAS of East Asian ancestry 
was not publicly available. Conventionally, when independent GWAS statistics 
with matched population and sufficient sample size are not available, a strategy 
to split the cohort into two groups (that is, a discovery group to conduct GWASs 

and a validation group to derive PRSs) has been used. This strategy either 
reduces the accuracy of GWAS statistics or lowers the statistical power in PRS 
validations, depending on how the cohort is split. To address this, we adopted a 
tenfold LOGO meta-analysis. We first randomly split the entire cohort into ten 
subgroups. We then conducted GWASs for 45 quantitative traits within each 
of the 10 subgroups. We performed the linear regression assuming the additive 
effect of the imputed dosage of each variant by PLINK39. For individuals taking 
anti-hypertensive medications, we added 15 mmHg to their sBP and 10 mmHg 
to their dBP and derived their MAP and pulse pressure using the adjusted sBP 
and dBP. We also added smoking status as a covariate for BP-related traits. Other 
trait-specific covariates, adjustment for medications and sample exclusion criteria 
are described in Supplementary Table 13 and elsewhere40. We next meta-analyzed 
the statistics from nine subgroups by the inverse-variance method assuming 
the fixed-effect ten times, keeping one subgroup away from the meta-analysis 
for PRS derivation and validation each time (a tenfold LOGO meta-analysis 
approach). Before performing LOGO, we excluded genetically related individuals 
from the cohort, based on PI_HAT > 0.125, as calculated by PLINK software. 
We adopted this strategy to obtain precise estimates of the HR, not to maximize 
the R2 value, which will be maximized when we have the largest GWAS samples. 
We applied linkage disequilibrium (LD) score regression (LDSC)41 to the meta-
analyzed summary statistics to estimate the heritability and potential population 
stratification. We also performed cross-trait LDSC42 to compare the statistics 
from the LOGO GWAS (meta-analysis of nine subgroup GWASs) and those 
from the conventional GWAS (using all individuals in the cohort). The summary 
results of the GWASs are described in Supplementary Table 4.

UKB. We applied the tenfold LOGO approach to 20 clinical phenotypes for which 
individual-level phenotype data in UKB were available (Supplementary Table 7). 
We performed GWASs using the linear regression model in Hail v0.2 (https://hail.is)  
with covariates including age, age2, sex and the top 20 principal components. For 
BP-related traits, we added 15 mmHg and 10 mmHg to sBP and dBP, respectively, 
if individuals are taking anti-hypertensive medication, and derived the MAP and 
pulse pressure using the adjusted sBP and dBP. We also added smoking status 
as a covariate for BP-related traits. We performed cross-trait LDSC42 to compare 
the statistics from the LOGO GWAS and those from the whole-cohort GWAS, 
for which we used summary statistics from B. M. Neale’s laboratory (http://www.
nealelab.is/uk-biobank). The summary results of the meta-analyzed GWASs 
are described in Supplementary Table 8. For the additional 13 traits among the 
remaining 25 traits investigated in BBJ, we were able to collect independent large-
scale GWAS summary statistics of European ancestry, either from publicly available 
websites or on request to the authors. The information on these 13 GWASs is 
described in Supplementary Table 9. We note that although we exhaustively 
checked for cohort-level overlap between the biobanks and previous GWASs, we 
could not completely exclude the possibility of an individual-level overlap, which 
would be technically difficult to detect in large-scale genetic studies.

FinnGen. We did not perform within-cohort GWASs for the FinnGen cohort 
because the availability of individual-level phenotype data was limited. For the 20 
traits where we performed LOGO in UKB, we referred to UKB GWAS summary 
statistics from all of the 361,194 white British individuals. With the exception 
of C-reactive protein (CRP), for 12 traits among the 13 traits where we used 
independent previous GWAS summary statistics in UKB, we utilized the same 
GWAS summary statistics, as we confirmed that there was no apparent cohort-
level overlap with FinnGen (Supplementary Table 9). For CRP, since the GWAS of 
Ligthart et al.43 included the FINRISK Study, which was also involved in FinnGen, 
we additionally performed GWAS in UKB individuals (n = 353,466), and used 
these summary statistics in the calculation of PRSs. When performing CRP GWAS 
in UKB, we excluded individuals with autoimmune or inflammatory diseases.

Construction of PRSs. BBJ. By referring to the effect sizes and P values of ten 
summary results from meta-analyzed GWASs of nine subgroup GWASs, we 
derived the PRSs of individuals in the one withheld subgroup using a clumping 
and thresholding method. First, we performed LD clumping on the meta-analyzed 
GWAS summary statistics with PLINK software using 5,000 randomly selected 
BBJ participants as an LD reference. Briefly, we first used PLINK to clump all of 
the variants using the following flags: --clump-p1 1 --clump-p2 1 --clump-r2 0.1 
--clump-kb 1000. We then computed PRSs for variants meeting the following  
P-value thresholds: 5 × 10−8, 5 × 10−7, 1 × 10−6, 1 × 10−4, 1 × 10−3, 1 × 10−2, 5 × 10−2, 
0.1, 0.2, 0.5 and 1. In the one withheld subgroup, we derived PRSs by multiplying 
the dosage of risk alleles for each variant by the effect size in the GWAS and 
summing the scores across all of the selected variants. We quantified the trait 
variance explained by the derived PRSs in individuals within the withheld 
subgroup, by calculating the adjusted R2 attributable to the PRSs from nested 
models, in which the full linear model was the trait value ~ PRS + all covariates and 
the nested model dropped only the PRS term (Supplementary Table 11). For sBP, 
we also assessed the association of the PRS status (the highest quintile versus the 
lowest quintile) and the status of hypertension, which was defined as either being 
hypertensive (sBP > 130 mmHg or dBP > 80 mmHg) or being treated with anti-
hypertensive medications, by using a generalized linear model.
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UKB and FinnGen. For the clinical phenotypes where the individual clinical  
data were available (20 traits in UKB), we derived the PRSs in the same manner as 
described above for BBJ (the tenfold LOGO approach and deriving the PRSs  
in the one withheld group using the weights from the meta-analyzed summary 
statistics of nine subgroup GWASs by a clumping and thresholding approach). The 
variance explained by the derived PRSs is described in Supplementary Table 12.  
For the remaining 13 traits, we used a clumping and thresholding method on the 
collected large-scale GWAS summary statistics. Then, we derived the PRSs in the 
entire cohort referring to the weights and selected variants from the clumping 
and thresholding results. We basically followed the original quality-control policy 
that had been adopted within each of the cohorts, and thus the PRSs of UKB and 
FinnGen could have included the rarer variants when compared with those for BBJ 
(MAF > 0.0001 versus MAF ≥ 0.01). We confirmed that both the performance of the 
PRSs and the result of downstream analyses did not substantially change (that is, the 
correlation r of these statistics exceeded 0.97), even when we restricted the variants 
used for calculating the PRSs to those with MAF ≥ 0.01 in UKB and FinnGen.

Survival analysis using PRSs. BBJ. We used Cox proportional hazards models to 
test the association of the derived PRSs of clinical phenotypes with lifespan (that is, 
age at death) in the withheld subgroups. For the within-BBJ analysis, we selected 
PRSs from the P-value threshold of the best predictive capacity that had the largest 
variance explained by the PRS (the best P value). We note that the threshold 
selection was based on the predictive capacity of the trait under investigation and 
not based on the result of the association of PRSs with lifespan. For the trans-
biobank analysis, since individual-level data were not always available for some 
of the traits, optimization of the P-value thresholds was technically challenging. 
We thus selected PRSs from a fixed P-value threshold of 1.0 × 10−6, which was 
supposed to account for the polygenic architecture of complex traits while avoiding 
potential biases in PRS predictions induced by the large number of non-significant 
variants44.

The PRSs for each trait in each subgroup were scaled to have zero mean and 
unit variance by Z-score transformation to obtain and compare the effect sizes 
across the investigated phenotypes. We used Cox proportional hazards models 
to test the association of the scaled PRS of each trait in each subgroup with 
lifespan, with adjustment for sex, the 47-disease status and the top 20 principal 
components. We performed Schoenfeld residual tests45 to examine the proportional 
hazards assumption for the Cox regression. No apparent correlation between 
the Schoenfeld residuals and time was statistically or visually confirmed. We 
further meta-analyzed the association statistics from each of the ten subgroups 
by the inverse variance method. We confirmed that association statistics (that is, 
coefficients) from the fixed threshold of 1 × 10−6 were concordant with those from 
the best P values (Pearson’s r = 0.85 and P = 2.5 × 10−13). Nevertheless, we consider 
that further implementation of the methodology for optimally harmonizing PRSs 
across different cohorts is still warranted. In addition, here we note that spouse 
pairs in LOGO analyses might potentially cause a subtle bias in GWASs and  
PRS–lifespan associations if assortative mating exists46.

To conduct the association test of the PRSs with cause-specific mortality, we 
categorized the individual cause of death defined by the International Classification 
of Diseases 10 into the four most frequent causes of death in Japan as described 
elsewhere12. Briefly, we defined the deaths from malignant diseases as C00-C97, the 
deaths from cardiovascular diseases as I01–I02, I05–I09, I20–I25, I27, and  
I30–I52, the deaths from pneumonia as J12-J18, and the deaths from 
cerebrovascular diseases as I60-69. We then performed the survival analyses to 
investigate the association of the biomarker PRS with each of the four mortality 
outcomes. A sex-stratified association study (Extended Data Fig. 3a) was 
conducted by using the same Cox proportional hazards models within male and 
female participants, except that we excluded sex from the covariates.

To describe a standardized survival curve, we compared HRs for participants 
at the highest genetic risk (fifth quintile of PRSs) with those at an intermediate risk 
(quintiles 2 to 4) or the lowest risk (first quintile) as described previously47, which 
were standardized to the mean of all the covariates (Extended Data Fig. 7). For the 
sBP PRS, we also analyzed the interaction effects with lifestyle factors recorded 
in the cohort. The lifestyle factors were obtained from the questionnaire to the 
participants, which asked them about their usual frequency of consumption or 
exercise of an investigated trait by selecting one from four categorical values. The 
answered values were converted to the quantitative values so that they represented 
the mean value of each category, except for the two binary lifestyle traits (whether 
a participant has ever smoked cigarettes and whether a participant currently 
drinks alcohol) (Supplementary Table 5). All the survival analyses were performed 
using the survival package in R software, version 3.3.0 (https://cran.r-project.org/
package=survival).

UKB and FinnGen. For the clinical biomarkers where the individual level-data 
was available (20 traits in UKB), we performed the same 10-fold survival analyses 
followed by meta-analysis as explained above in BBJ. We included the same 
covariates used in the GWASs for each cohort, except for age and age squared, in 
the Cox proportional hazard models. For the remaining traits, we performed the 
survival analyses in the entire cohort to test the association of the public GWAS-
based PRS of each trait with lifespan. As described above, we adopted the fixed 

P value threshold of 1 × 10−6 for the derivation of PRSs for the cross-biobank 
comparison. We confirmed that association coefficients from the fixed threshold of 
1 × 10−6 was concordant with those from the best P values in the 20 traits in UKB 
(Pearson’s r = 0.93 and P = 1.3 × 10−9). To conduct the association test of the PRSs 
with cause-specific mortality, we again categorized the individual cause of death 
defined by the International Classification of Diseases 10 into the four causes of 
death as described above. A sex-stratified association study (Extended Data  
Fig. 3b,c) was conducted by using the same Cox proportional hazards models within 
male and female participants, except that we excluded sex from the covariates.

As a secondary analysis, we performed an association test of the sBP PRS with 
parental lifespan in UKB to validate the result of the primary analysis with a much 
larger statistical power. To perform an association test of individuals’ genotype with 
their father’s and mother’s survival, we separately calculated Martingale residuals 
of the Cox model under a null model, scaled up to give a residual trait with a 1:1 
correspondence with the HR, and tested its association with genotype dosage as 
described previously48.

For the BMI PRS, we also analyzed the interaction effects with lifestyle factors 
recorded in UKB. We collected the individual-level data of smoking status (ever 
smoked and smoking cessation), alcohol intake, coffee intake and regular physical 
activity. We tested the effect of an interaction term between the BMI PRS and each 
of the lifestyle factors on lifespan.

We finally performed a fixed-effect meta-analysis of the PRS–lifespan 
association studies from BBJ, UKB and FinnGen, by the inverse variance method. 
To estimate the years of life gained or lost from PRS–lifespan associations, we 
converted the effect size from the Cox proportional hazard models into the years 
gained based on the following equation as described previously38,48

Years gained ¼ 10 ´ �logeðCoxHRÞ
� �

The association results of the trans-ethnic PRS meta-analysis including the 
years of life gained/lost are described in Supplementary Table 10.

Trans-ethnic MR study. We conducted a two-sample MR study to investigate the 
effect of each of the 33 biomarkers investigated in the trans-ethnic study on the 
outcome (that is, lifespan).

For the traits where we performed LOGO in the PRS calculation (that is, 33 
traits in BBJ and 20 traits in UKB), we randomly split the cohort in half, with one 
group for performing GWAS and the other group for performing MR. For the 
selection of variants to be used as instrumental variables, we performed GWASs 
within the GWAS group with the same covariates described earlier, and selected 
independent genetic variants with PGWAS < 1.0 × 10−6 for each trait (lead variants at 
significant loci at least ±500 kilobases distant from each other). We next performed 
an association study of these genetic variants with lifespan within the MR group, 
by using the same Cox proportional hazards model as described earlier. By using 
these genetic variants and the association estimates, we obtained the effect estimate 
of the exposure (biomarker) on the outcome (lifespan) by pooling all MR estimates 
using the fixed‐effects inverse-variance-weighted method49.

For the traits where we used independent previous GWAS summary statistics 
in the PRS calculation (that is, 13 traits in UKB and 33 traits in FinnGen), we 
selected independent genetic variants with PGWAS < 1.0 × 10−6 from these statistics. 
We next performed an association study of these genetic variants with lifespan 
in the whole cohort, by using the same Cox proportional hazards model. These 
estimates are used to obtain the MR effect estimate by the inverse-variance-
weighted method.

We finally performed a fixed-effect meta-analysis of the MR effect estimates 
from each of the three cohorts.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genotype data of BBJ used in this study are available from the Japanese 
Genotype-phenotype Archive (http://trace.ddbj.nig.ac.jp/jga/index_e.html) with 
the accession code JGAD00000000123. The GWAS summary statistics for BBJ are 
available at the National Bioscience Database Center Human Database with the 
accession code hum0014. The UKB analysis was conducted via the application 
31063, and its GWAS summary statistics are available at http://www.nealelab.is/
uk-biobank. This study used the FinnGen release 3 data. Summary statistics from 
FinnGen are available on request from the FinnGen project and are being prepared 
for public release in May 2020.

code availability
We used publicly available software for the analyses. The software programs used 
are listed and described in the Methods.
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Extended Data Fig. 1 | A comparison between observational studies in BioBank Japan and uK Biobank. Hazard ratios (HRs) from Cox proportional-
hazard models for lifespan according to observed phenotypes in BioBank Japan (BBJ [n=179,066]; a) and UK Biobank (UKB [n=361,194]; b) are shown 
and compared. The boxes indicate the point estimates, and the horizontal bars indicate the 95% confidence interval. Boxes colored in blue (a) or green 
(b) indicate the nominal significance (P < 0.05) and the white-filled boxes indicate the statistical significance after correcting for multiple testing by the 
Bonferroni method. All the acronyms are described in Fig. 2.
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Extended Data Fig. 2 | The relationship between systolic blood pressure and Hr for age at death in BioBank Japan. The HR for age at death according to 
the observed systolic blood pressure in BBJ (n=179,066) is shown. The dotted lines represent the 95% confidence interval.
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Extended Data Fig. 3 | Sex-stratified association studies of PrS with lifespan across three cohorts. The results of hazard ratios from sex-stratified Cox 
proportional-hazard models for lifespan, according to the PRS of the clinical phenotypes in (a) BioBank Japan (n=179,066), (b) UK Biobank (n=361,194), 
and (c) FinnGen (n=135,638) are shown. The boxes in blue indicate the point estimates in males, and those in red indicate the point estimates in females. 
The horizontal bars are the 95% confidence interval. For both sexes, we separately performed the fixed-effect meta-analyses of the association results 
from the three cohorts (d) by the inverse-variance method.
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Extended Data Fig. 4 | Trans-ethnic Mendelian randomization studies. Shown are the results of two-sample Mendelian randomization studies with an 
inverse-variance weighted method to estimate the causal effect of biomarkers on lifespan in (a) BioBank Japan (n=179,066), (b) UK Biobank (n=361,194), 
and (c) FinnGen (n=135,638). We performed a fixed-effect meta-analysis of the association results from the three cohorts (d) by the inverse-variance 
method (ntotal=675,898), and displayed only nominally significant traits (9 out of 33 investigated traits). The circles indicate the point estimates, and the 
horizontal bars are the 95% confidence interval. Circles in colors indicate the nominal significance (P < 0.05) and the white-filled circles indicate the 
statistical significance after the Bonferroni correction for multiple testing. The size of the circles reflects the statistical significance in -log10(P).
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Extended Data Fig. 5 | The overlap of the variants constituting the PrSs between uK Biobank and BioBank Japan. a, Among the variants constituting 
UK Biobank PRSs, the variants in blue did not exist in BioBank Japan variant dataset, those in green existed in BioBank Japan variant dataset, and those 
in pink were shared with or tagged (r2 > 0.8) by the variants constituting BioBank Japan PRSs of the same trait. To calculate r2 of LD, we used the LD 
reference panel from 5,000 randomly selected BioBank Japan individuals. Please note that the variants constituting PRSs from all the 10 sub-groups were 
concatenated in 20 traits with LOGO analysis. b, Among the variants constituting BioBank Japan PRSs, the variants in blue did not exist in UK Biobank 
variant dataset, those in green existed in UK Biobank variant dataset, and those in pink were shared with or tagged by the variants constituting UK Biobank 
PRSs of the same trait. To calculate r2 of LD, we again used the LD reference panel from 5,000 randomly selected BioBank Japan individuals. Please note 
that the variants constituting PRSs from all the 10 sub-groups were concatenated in all 33 traits with LOGO analysis.
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Extended Data Fig. 6 | A funnel plot for the effects of systolic blood pressure (sBP) PrS on lifespan, according to disease groups. Sensitivity analyses of 
the effect of sBP PRS on the age at death. A funnel plot of the effects of sBP PRS on the age at death is shown by stratifying study participants into disease 
groups with at least 3,000 case samples (ntrait=22). The effect sizes from Cox proportional-hazard models are on x axis, and inverse standard errors 
(precision) are on y axis. A dotted line indicates the effect size from overall participants (n=179,066).
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Extended Data Fig. 7 | A definition of the three bins according to the PrSs. A distribution of normalized sBP PRS and the stratification according to the 
quintiles. We defined the lowest, intermediate, and highest PRS bins according to the quintiles of PRS (first, 2-4th, and fifth, respectively). Each quintile bin 
was defined so as to have the same number of participants.

NATure MeDiciNe | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Yukinori Okada

Last updated by author(s): Jan 21, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection No software was used.

Data analysis We used publicly available software for the data analysis (R 3.3.0, plink 1.9 and 2.0, Minimac3, IMPUTE4, Hail 0.2, Beagle 4.1, LDSC 
v1.0.1). 
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The genotype data of BioBank Japan used in this study are available from the Japanese Genotype-phenotype Archive (JGA; http://trace.ddbj.nig.ac.jp/jga/
index_e.html) with accession code JGAD00000000123. The GWAS summary statistics of BioBank Japan are available at the National Bioscience Database Center 
(NBDC) Human Database with the accession code hum0014. UK Biobank analysis was conducted via the application 31063, and its GWAS summary statistics is 
available at http://www.nealelab.is/uk-biobank. This study used the FinnGen release 3 data. Summary statistics from FinnGen are available on request from FinnGen 
project and being prepared for a public release in May 2020.
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Life sciences study design
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Sample size Clinical information and genotype data were obtained from BioBank Japan (BBJ) project, which is a biobank that collaboratively collected DNA 
and serum samples from 12 medical institutions in Japan and recruited approximately 200,000 participants. Of them, we included individuals 
with genotype and basic phenotype data. The UK Biobank project is a population-based prospective cohort that recruited approximately 
500,000 people. FinnGen is a public-private partnership project combining genotype data from Finnish biobanks and digital health record data 
from Finnish health registries. Of them, we used the genotype and phenotype data of 135,638 participants in this project.

Data exclusions In BBJ, we excluded individuals with the age under 18, low call rate in genotyping (< 98%), closely related (PI_HAT < 0.125), and ancestry other 
than Japanese (based on PCA plot) for quality control and to avoid potential confounders as described in Akiyama et al. Nat Commun 2019, 
and Kanai et al. Nat Genet 2018. 

Replication We replicated our findings on survival analyses by conducting the same analysis with the same pipeline in UK Biobank cohort (n = 361,194) 
and FinnGen cohort (n = 135,638).

Randomization In the newly developed method called LOGO, we assigned a random number to each participant and randomly split the whole participants 
into 10 groups.

Blinding We did not apply blinding of the samples because no intervention was conducted in our study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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Flow cytometry
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Human research participants
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Population characteristics The detailed information of participants such as age and sex distributions is summarized in Supplementary Table 1a. BioBank 
Japan is a hospital-based cohort, and participants have the diagnosis of at least one of 47 common diseases. UK Biobank is a 
population-based cohort, enrolling healthy volunteers. Since it is a recently-launched cohort, mean age at death is younger than 
the other two cohorts. FinnGen is a mixture of population-based and disease-based cohorts.

Recruitment BioBank Japan (BBJ) project recruited approximately 200,000 participants from 12 medical institutions with the diagnosis of at 
least one of 47 diseases, mainly of Japanese ancestry. Participants have the diagnosis of at least one of 47 common diseases. We 
confirmed that the main conclusion of our manuscript was not confounded by the proportion of patients with a specific disease 
group by the sensitivity analyses. The coherent results with the other two biobanks further mitigated concerns over potential 
biases.

Ethics oversight All the participants provided written informed consent approved from ethics committees of RIKEN Center for Integrative Medical 
Sciences, and the Institute of Medical Sciences, the University of Tokyo. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with  ...
	Online content
	Fig. 1 An overview of the study design.
	Fig. 2 The HRs for the age at death, according to clinical phenotypes and according to the PRSs and their correlations in BBJ.
	Fig. 3 The standardized survival rate, according to sBP and albumin, and the PRS status of both traits in BBJ.
	Fig. 4 Trans-ethnic association study of biomarker PRSs with lifespan.
	Extended Data Fig. 1 A comparison between observational studies in BioBank Japan and UK Biobank.
	Extended Data Fig. 2 The relationship between systolic blood pressure and HR for age at death in BioBank Japan.
	Extended Data Fig. 3 Sex-stratified association studies of PRS with lifespan across three cohorts.
	Extended Data Fig. 4 Trans-ethnic Mendelian randomization studies.
	Extended Data Fig. 5 The overlap of the variants constituting the PRSs between UK Biobank and BioBank Japan.
	Extended Data Fig. 6 A funnel plot for the effects of systolic blood pressure (sBP) PRS on lifespan, according to disease groups.
	Extended Data Fig. 7 A definition of the three bins according to the PRSs.




