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Tissue-specific enhancer–gene maps from 
multimodal single-cell data identify causal 
disease alleles
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Translating genome-wide association study (GWAS) loci into causal variants 
and genes requires accurate cell-type-specific enhancer–gene maps from 
disease-relevant tissues. Building enhancer–gene maps is essential but 
challenging with current experimental methods in primary human tissues. 
Here we developed a nonparametric statistical method, SCENT (single-cell 
enhancer target gene mapping), that models association between enhancer 
chromatin accessibility and gene expression in single-cell or nucleus 
multimodal RNA sequencing and ATAC sequencing data. We applied 
SCENT to 9 multimodal datasets including >120,000 single cells or nuclei 
and created 23 cell-type-specific enhancer–gene maps. These maps were 
highly enriched for causal variants in expression quantitative loci and 
GWAS for 1,143 diseases and traits. We identified likely causal genes for both 
common and rare diseases and linked somatic mutation hotspots to target 
genes. We demonstrate that application of SCENT to multimodal data from 
disease-relevant human tissue enables the scalable construction of accurate 
cell-type-specific enhancer–gene maps, essential for defining noncoding 
variant function.

Genome-wide association studies (GWASs) have mapped human dis-
eases loci1–4 harboring untapped mechanistic insights that can point to 
novel therapeutics2,5. However, only rarely are we able to define causal 
variants or their target genes. Of the hundreds of associated variants in 
a single locus, only one or a few may be causal; others simply tag causal 
variants2,6,7. Causal genes are also challenging to determine, since causal 
variants lie in noncoding regions 90% of the time8–10, may regulate dis-
tant genes11–13 and employ context-specific regulatory mechanisms14–17.

To define causal variants and genes, previous studies used sta-
tistical and experimental approaches. Statistical fine-mapping18–23 
can narrow the set of candidate causal variants, particularly when 

GWAS includes diverse ancestral backgrounds24–28. However, statistical 
approaches rarely identify true causal variants with confidence7,23,29–32. 
To define causal genes, previous studies have built enhancer–gene 
maps that can prioritize causal variants in enhancers and link them to 
genes they regulate. These maps often require large-scale epigenomic 
and transcriptomic atlases (for example, Roadmap33, BLUEPRINT34 
and ENCODE35) and are built by correlating enhancer activity with 
gene expression36,37, by combining enhancer activity and probability 
of physical contact with the gene38,39, or by integrating multiple link-
ing strategies through composite scores40. However, current meth-
ods largely use bulk tissues or cell lines. Bulk data (1) cannot be easily 
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Unsurprisingly, we observed uncontrolled type I error with Poisson 
regression in null dataset where we permuted cell barcodes to dis-
rupt ATAC and RNA associations (Extended Data Fig. 1b,c). Moreover, 
commonly used single-cell analytical models (for example, negative 
binomial regression and linear regression) demonstrated inflated sta-
tistics (Extended Data Fig. 1d,e and Methods). To accurately estimate 
the error and significance of βpeak, we implemented a two-tailed non-
parametric bootstrapping framework57 (Methods and Extended Data 
Fig. 2) by resampling cells and deriving the empirical significance of 
βpeak. Bootstrapping resulted in calibrated statistics with appropriate 
type I error (Extended Data Fig. 1f). Therefore we used this model to 
define statistically significant peak–gene associations. We considered 
and implemented two alternative models (Extended Data Fig. 1g,h, 
Supplementary Fig. 1 and Supplementary Note 1).

Discovery of cell-type-specific SCENT enhancer–gene links
We obtained nine single-cell multimodal datasets from diverse human 
tissues representing 13 cell types (immune-related, hematopoietic, 
neuronal and pituitary). Since we are interested in autoimmune dis-
eases, we generated an inflammatory tissue dataset from synovial 
tissues from 11 patients with rheumatoid arthritis and 1 patient with 
osteoarthritis (arthritis-tissue dataset; ndonor = 12, ncells = 30,893)58. In 
addition, we obtained eight public datasets with 129,672 cells46,59–63 
(Fig. 1c). We analyzed 16,621 genes and 1,193,842 open chromatin peaks 
in cis after quality control (QC) (4,753,521 peak–gene pairs, 28 median 
peaks per gene; Supplementary Fig. 2 and Supplementary Table 1). In 
each dataset, we clustered and annotated cell types. Applying SCENT to 
each of the cell types with ncells > 500, we constructed 23 enhancer–gene 
maps with a total of 87,648 peak–gene links (false discovery rate (FDR) 
<10%, Fig. 2a and Extended Data Fig. 3). Genes had variable number of 
associated peaks (from 0 to 97, mean 4.13, Extended Data Fig. 4a). After 
accounting for the number of cells, power to detect peak–gene links 
was associated with the number of ATAC–seq fragments (P = 0.045) and 
unique RNA molecules (P = 0.030; Extended Data Fig. 4b,c).

To assess replicability of SCENT peak–gene links, we compared 
the effects from the arthritis-tissue dataset (discovery) with those 
from other datasets in the same cell type (replication) in B cells, T/
natural killer (NK) cells and myeloid cells (Supplementary Table 2a). 
Despite different tissue contexts, we observed high concordance in 
estimated effect of chromatin accessibility on gene expression for 
peak–gene pairs significant in both datasets (FDR <10%; mean Pearson’s 
r = 0.63 of effect sizes, 99% mean directional concordance across all the 
datasets: Extended Data Fig. 4d). For comparison, we tested ArchR55 
or Signac46,50, two popular linear parametric single-cell multimodal 
methods. In contrast, we noted lower concordance (mean Pearson’s 
r = 0.19, 57% mean directional concordance in ArchR and r = 0.38, 99% 
mean directional concordance in Signac; Supplementary Table 2b,c). 
SCENT detects enhancer–gene links more reproducibly than previous 
parametric methods.

To assess if SCENT peaks were functional, we examined if (1) they 
co-localized with conventional cis-regulatory annotation, (2) their 
effect on expression was greater for closer peak–gene pairs, (3) they 
had high sequence conservation and (4) peak–gene connections had 
experimental support.

First, we tested the overlap of SCENT peaks with an ENCODE 
cCRE64, a cis-regulatory annotation devised from bulk epigenomic data-
sets. We observed that 98.0% of SCENT peaks overlapped with cCRE on 
average, compared to 23.3% of random size-matched cis-regions and 
89.0% of non-SCENT peaks (Extended Data Fig. 4e). We also annotated 
SCENT peaks in immune cell types with 18-state chromHMM results; 
97.4% of the SCENT peaks overlapped with promoter or enhancer 
annotations in aggregate of 41 immune-related samples37.

Second, we examined the strength of enhancer-gene links, hypoth-
esizing that stronger links would be more proximal to the transcription 
start site (TSS) of target genes. The regression coefficient βpeak (the 

applied to rare cell populations, (2) obscure cell-type-specific gene 
regulation and (3) require hundreds of experimentally characterized 
samples. While perturbation experiments (for example, CRISPR inter-
ference41 or base editing42) can point to links between enhancers and 
genes, they are difficult to scale because they require cell-type-specific 
experimental protocols43.

Advances in single-cell technologies offer new opportunities 
for building cell-type-specific enhancer–gene maps. Multimodal 
protocols enable joint capture of epigenomic activity by assay for 
transposase-accessible chromatin with sequencing (ATAC–seq) 
alongside transcriptional activity with nuclear RNA sequenc-
ing (RNA-seq)44–48. These methods are applied at scale to cells in 
human primary tissues without disaggregation, enabling query of 
disease-relevant tissues. If we establish accurate links between open 
chromatin enhancers and genes in single cells or nuclei, statistical 
power should exceed bulk-tissue-based methods since each observa-
tion is at a cell-level resolution. However, the sparse and nonparametric 
nature of single-cell RNA-seq and ATAC–seq makes confident identifi-
cation of these links challenging. So far, most methods use parametric 
linear regression models to link enhancers and genes (for example, 
ArchR49 and Signac46,50) despite these features or utilize co-accessibility 
of regulatory regions from ATAC–seq alone (for example, Cicero51). 
These previous methods have not generally demonstrated efficacy in 
practice for fine-mapping causal variants in complex traits.

In this Article, we developed single-cell enhancer target gene map-
ping (SCENT) to accurately map enhancer–gene pairs by associating 
enhancer activity (that is, peak accessibility) with gene expression 
across multimodal single cells by Poisson regression and nonparamet-
ric bootstrapping. We predicted that expression-associated enhanc-
ers are more likely to be functionally important. We show that SCENT 
enhancers are enriched in statistically fine-mapped causal variants. 
We use SCENT enhancer–gene map to define causal variants, genes 
and cell types in common and rare disease loci.

Results
Overview of SCENT
SCENT accurately identifies significant association between chroma-
tin accessibility in regulatory regions and expression of individual 
genes across single cells (Fig. 1a). For each peak–gene pair, we tested 
association between binarized chromatin accessibility in an ATAC peak 
with RNA-seq gene counts in cis (<500 kb from gene body, Methods). 
We tested each cell type separately to capture cell-type-specific gene 
regulation and to avoid spurious peak–gene associations due to gene 
co-regulation across cell types. Those associations can be used for 
prioritizing (1) likely causal variants in regulatory regions associated 
with gene expression, (2) likely causal genes if they are associated with 
the identified regulatory region and (3) the critical cell types based on 
cell type the association is identified in.

Since both RNA-seq and ATAC–seq data are generally sparse50,52–55, 
we used Poisson regression53,56:

Ei ∼ Poisson(λi)

log (λi) = β0 + βpeakXpeak + β%mitoX%mito + βnUMIXnUMI + βbatchXbatch,

where Ei is the observed expression count of ith gene, and λi is the 
expected count under Poisson distribution. βpeak is the effect of chro-
matin accessibility of a peak (Xpeak) on expression of the ith gene; its 
magnitude reflects the strength of the regulatory effect and its sign 
indicates enhancing versus silencing effect. We accounted for donor or 
batch effects (Xbatch) and cell-level technical factors such as percentage 
of mitochondrial reads (X%mito).

However, Poisson regression might be suboptimal for highly 
expressed and dispersed genes (Fig. 1b and Extended Data Fig. 1a). 
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Fig. 1 | Schematic overview of SCENT and SCENT enhancer–gene pairs 
across nine single-cell multimodal datasets. a, SCENT identifies (1) active 
cis-regulatory regions and (2) their target genes in (3) a specific cell type. Those 
SCENT results can be used to define likely causal variants, genes and cell types for 
GWAS loci. b, SCENT models association between chromatin accessibility from 

ATAC–seq and gene expression from RNA-seq across individual cells in a given 
cell type. c, Nine single-cell datasets on which we applied SCENT to create 23 
cell-type-specific enhancer–gene maps. The cells in each dataset are described 
in UMAP embeddings from RNA-seq, colored by cell types (ncells > 500) and 
annotated by cell numbers.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | April 2024 | 615–626 618

Article https://doi.org/10.1038/s41588-024-01682-1

effect size of peak accessibility on gene expression) became larger 
and more positive as the SCENT peaks got closer to the TSS (Fig. 2b,c), 
consistent with previous observations55,65.

Third, we assessed whether SCENT peaks had larger phastCons 
score66, reflecting higher sequence conversation across species67; 
evolutionary conserved regulatory regions are functionally active and 
enriched for complex trait heritability67. As expected, exonic regions 
were much more evolutionary conserved than all noncoding cis-region 
(mean ΔphastCons score 0.38, paired t-test P < 10−323; Fig. 2d, purple). 
SCENT regulatory regions were also conserved relative to noncoding 
cis-regions (mean ΔphastCons score 0.13, paired t-test P = 4.2 × 10−42 
in arthritis-tissue dataset; Fig. 2d, teal). In contrast, the ΔphastCons 
score between all cis-ATAC peaks and all noncoding cis-region was more 
modest (mean ΔphastCons score 0.092, paired t-test P = 8.7 × 10−27 in 
arthritis-tissue dataset; Fig. 2d, yellow). We tested the effect of pro-
moters on the observed higher conservation in SCENT peaks. We con-
firmed that the ΔphastCons score for SCENT is still larger than for all 
cis-regulatory ATAC–seq peaks, even after excluding promoters. We 
note that the difference was consistent across multiple datasets with 
overlapping confidence intervals (CIs) suggesting non-statistically 
significant differences (Extended Data Fig. 4f). More generally, to test 
the effect of SCENT peaks’ proximity to TSS on the higher conservation 
(Supplementary Fig. 3a), we matched each of the SCENT peak–gene 
pairs to one non-SCENT peak–gene pair matching on TSS distance (Sup-
plementary Fig. 3b). SCENT peaks had significantly higher conservation 
scores than distance-matched non-SCENT peaks (mean ΔphastCons 
score 0.034, P = 4.7 × 10−4 in arthritis-tissue dataset; Extended Data 
Fig. 4g and Methods), indicating the functional importance of SCENT 
regulatory regions not solely driven by TSS proximity.

Finally, we tested whether the target genes from SCENT were 
enriched for experimentally confirmed enhancer–gene links. First, 
we used CRISPR-Flow FISH results39 that included 278 positive and 
5,470 negative enhancer–gene connections. The SCENT peaks from 
tissues relevant to the experiment were significantly enriched for posi-
tive connections relative to non-SCENT peaks (for example, Fisher’s 
exact odds ratio 4.5×, P = 1.8 × 10−9 in arthritis-tissue dataset; Meth-
ods, Fig. 2e and Supplementary Table 3). Second, we used H3K27ac 
HiChIP data in naive T cells, Th17 T cells and regulatory T cells up to 
1-kb resolution68. Across our six T cell datasets, the SCENT peak–gene 
links were 1.6-fold enriched within H3K27ac HiChIP enhancer–gene 
loops relative to non-SCENT peaks (Fisher’s exact test P = 2.3 × 10−54, 
Fig. 2f and Methods).

We anticipate that the genes with the largest number of SCENT 
peaks are likely to be the most constraint and least tolerant to loss 
of function mutations. These genes included FOSB (n = 97), JUNB 
(n = 95) and RUNX1 (n = 77), highly conserved transcription factors. 
We assessed mutational constraint based on the absence of deleterious 
variants within human populations, including the probability of being 
loss-of-function intolerant (pLI)69 and the loss-of-function observed/
expected upper bound fraction (LOEUF)70. The normalized number 
of SCENT peaks per gene is strongly associated with mean constraint 
score for the gene (β = 0.37, P = 4.9 × 10−90 for pLI where higher score 
indicates more constraint, and β = −0.35, P = −0.35 × 10−106 for LOEUF 
where lower score indicates more constraint; Extended Data Fig. 5a,b, 
respectively). Our results are consistent with prior reports that genes 
with many regulatory regions from bulk-epigenomic data are enriched 
for loss-of-function intolerant genes71.

Enrichment of eQTL putative causal variants in SCENT peaks
We examined whether the SCENT peaks harbor statistically fine-mapped 
putative causal variants for expression quantitative loci (eQTL). We 
used eQTL from GTEx across 49 tissues72 and defined putative causal 
variants as those with posterior inclusion probability (PIP) >0.2. Unsur-
prisingly, all accessible regions defined by ATAC–seq in cis-regions were 
modestly enriched in fine-mapped variants by 2.7× (yellow, Fig. 3a). 

Strikingly, SCENT peaks were more enriched in fine-mapped variants 
by 9.6× averaged across all datasets (teal, Fig. 3a). More stringent PIP 
threshold cutoffs yielded stronger enrichments (Supplementary Fig. 4).

Since many SCENT peaks are close to TSS regions, we considered if 
the enrichment was driven by TSS proximity (Supplementary Fig. 3a). 
The TSS distance is one of the most important features for causal eQTL 
variants73–78. We confirmed the relationship between proximity to TSS 
and causal variant enrichment in GTEx (Supplementary Fig. 5a,b). We 
therefore tested if the higher eQTL causal variant enrichment remained 
(1) after excluding promoter peaks from SCENT peak–gene linkages or 
(2) after matching the TSS distance. Excluding promoters, SCENT still 
consistently had higher enrichment in all analyzed datasets than all 
cis-regulatory ATAC–seq peaks (Extended Data Fig. 6a). We observed 
higher enrichment in SCENT peaks compared to TSS-distance-matched 
non-SCENT peaks while the differences now became insignificant 
(Extended Data Fig. 6b). This suggests that SCENT has additional infor-
mation in identifying functional cis-regulatory regions beyond TSS 
distance.

We next compared eQTL variant enrichment in SCENT peaks to 
peaks identified by two published linear parametric methods using 
single-cell multimodal data, ArchR55 and Signac46,50. Statistically sig-
nificant peak–gene links defined by the threshold of FDR <10% in ArchR 
and Signac without filtering with correlation r had lower causal variant 
enrichment (4.9× and 19.7×, respectively) compared to SCENT peaks 
(74.1×) with the same FDR threshold (Extended Data Fig. 6c). Given 
the large differences in the number of peak–gene links with FDR <10% 
among methods (4,330 in SCENT, 817,000 in ArchR and 9,840 in Signac 
on average), we were concerned that performance differences may 
reflect recall differences. By varying the thresholds of correlation r in 
ArchR and Signac (Methods), we called peak–gene pairs with differ-
ent levels of stringency and tested causal variant enrichment (that is, 
recall–precision tradeoff; Fig. 3b and Extended Data Fig. 6c). SCENT 
peaks demonstrated higher causal variant enrichment than ArchR and 
Signac peaks across different recall values. Additional benchmarking 
with existing methods including Cicero51 is described in Supplementary 
Note 2 (Extended Data Fig. 6d–i).

We assessed whether the Poisson regression or the bootstrapping 
in SCENT was driving the improved performance over linear paramet-
ric methods. We observed lower causal variant enrichment in peaks 
identified with Poisson regression alone compared to SCENT (14.4× 
versus 74.1× at FDR <10%, respectively; Extended Data Fig. 6h). This 
underscored the importance of accounting for variable gene count 
distribution by nonparametric bootstrapping.

SCENT can detect cis-regulatory regions in a cell-type-specific 
manner. We created cell-type-specific enhancer–gene maps in four 
major cell types with >5,000 cells across datasets; for each cell 
type we took the union of SCENT enhancers across datasets. The 
cell-type-specific SCENT enhancers were most enriched in eQTL vari-
ants within relevant samples in GTEx (for example, B cell SCENT peaks 
and eQTLs in Epstein–Barr-virus-transformed lymphocytes; Extended 
Data Fig. 6j).

These results showcased SCENT’s prioritization of causal eQTL 
variants in a cell-type-specific manner with higher precision than the 
previous single-cell methods.

Enrichment of GWAS causal variants in SCENT enhancers
SCENT can be used to build disease-specific enhancer–gene maps 
by applying it to multimodal data from disease-relevant tissues. We 
examined whether SCENT peaks can be used to prioritize disease causal 
variants. We obtained candidate causal with PIP >0.2 (ref. 28) from 
GWASs in two large-scale biobanks, including 1,046 disease traits from 
FinnGen79 and 35 binary and 59 quantitative traits from UK Biobank80. 
The aggregated SCENT enhancers were strikingly enriched in causal 
GWAS variants in FinnGen (31.6× on average; Fig. 3c) and UK Biobank 
(73.2× on average; Fig. 3d) while cell-type-specific SCENT tracks had 
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variable enrichment (Extended Data Fig. 7a,b). This enrichment was 
again much larger than all cis-ATAC peaks (12.8× in FinnGen and 38.8× 
in UK Biobank). The enrichment in SCENT peaks remained higher than 
all peaks even after removing promoter regions or conditioning on 
TSS distance; in some datasets, the difference was not significant with 
overlapping CIs (Extended Data Fig. 7c,d). The target genes of the likely 
causal variants for autoimmune diseases identified by SCENT peaks in 
immune cell types had higher fraction (10.8%) of know genes implicated 
in Mendelian disorders of immune dysregulation (ngene = 550)81,82 than 
SCENT peaks in fibroblasts (3.8%; Extended Data Fig. 7e).

We compared SCENT to alternative genome annotations and 
enhancer–gene maps from bulk tissues. Causal variant enrichment 
in FinnGen and UK Biobank was higher in SCENT (31.6× and 72.3×, 
respectively) than the conventional bulk-based annotations such as 
ENCODE cCREs (13.9× and 46.5×), ABC (16.3× and 53.3×) and EpiMap 
(12.9× and 40.6×) (Fig. 3c,d and Extended Data Fig. 7a,b). We again 
assessed the tradeoff between recall and enrichment (precision). We 
constructed SCENT from 9 datasets and 23 cell types with only 28 sam-
ples, substantially less than the 833 samples and tissues used to con-
struct EpiMap and 131 samples and cell lines for the ABC model. Despite 
the smaller dataset, SCENT peaks demonstrated higher enrichment 

of GWAS variants at a given number of identified peak–gene linkages 
than ABC model and EpiMap (Extended Data Fig. 8a). More stringent 
PIP threshold increased the enrichment (Extended Data Fig. 8b). The 
target genes for autoimmune disease by SCENT in immune-related 
cell types had higher fraction (10.8%) of known Mendelian genes of 
immune dysregulation81,82 than EpiMap (8.6%) and ABC model (4.4%) 
(Extended Data Fig. 7e). GWAS variants were also more enriched in 
SCENT enhancers than ArchR and Signac (Extended Data Fig. 8c,d). 
These results demonstrate the benefit of accurately modeling asso-
ciation between chromatin accessibility and gene expression at the 
single-cell resolution.

We hypothesized that putative causal variants identified by SCENT 
modulate chromatin accessibility (for example, transcription factor 
binding affinity). If so, the intersection of the SCENT enhancers and 
chromatin accessibility quantitative trait loci (caQTL) may be further 
enriched for GWAS causal variants83–86. To test this, we used single-cell 
ATAC–seq samples with genotype data58 (ndonor = 17; Methods) and 
performed caQTL mapping by leveraging allele-specific chromatin 
accessibility (binomial test followed by meta-analysis across donors) 
or by combining allele-specific with inter-individual differences (RAS-
QUAL87). We observed higher enrichment within intersected regions 
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with SCENT and caQTL than those with SCENT alone. The enrichment 
increased as we used more stringent threshold for caQTL peaks, reach-
ing as high as 333-fold (Fig. 3e). As an illustrative example, an asthma 
GWAS locus at 15q22.33 included a SCENT enhancer within an intron 
of SMAD3 gene that harbored a putative causal variant rs17293632 (PIP 
0.34; Extended Data Fig. 9a). This SCENT enhancer (Extended Data 
Fig. 9b) had a significant caQTL effect, from both (1) allele-specific 
effect (meta-analyzed binomial-test P = 2.7 × 10−4; Extended Data 
Fig. 9c) and (2) inter-individual differences in chromatin accessibility 
(P = 6.0 × 10−5; Extended Data Fig. 9d). The alternative allele T reduced 
the chromatin accessibility and was reported to disrupt a conserved 
AP-1 consensus site30. The allele T also decreased SMAD3 expression 
(β = −0.0687, P = 3.3 × 10−13 from eQTL catalog88). SMAD3, the target 
gene identified by SCENT, is involved in TGF-β signaling, which remod-
els airways in asthma89.

Together, SCENT demonstrated the potential to further enrich 
causal variants by integrating caQTLs.

Defining mechanisms of GWAS loci by SCENT
Finally, we sought to use SCENT to define disease causal mechanisms. 
We analyzed the fine-mapped variants from GWAS (FinnGen, UK 
Biobank and GWAS cohorts of rheumatoid arthritis26, inflammatory 
bowel disease29 and type 1 diabetes90). SCENT linked 4,124 putative 
causal variants (PIP >0.1) to their potential target genes across 1,143 
traits (Supplementary Table 4). These target genes were mostly close to 
the causal variant, with 20% of them being the closest gene to the causal 
variant (Supplementary Fig. 6a,b). However, 30.6% of SCENT-linked 
genes were more than 300 kb away from the causal variants.

We first focused on autoimmune loci, since our SCENT tracks 
were largely derived from immune cell types. We prioritized a single 
fine-mapped variant rs72928038 (PIP >0.3) within the T-cell-specific 
SCENT enhancer at a locus in 6q15 for multiple autoimmune diseases 
(rheumatoid arthritis, type 1 diabetes, atopic dermatitis and hypothy-
roidism; Fig. 4a). This enhancer was linked to BACH2, the closest gene 
to this fine-mapped variant. Base-editing the protective allele to the 
risk allele in T cells has confirmed the effect of this variant on BACH2 
expression91. Moreover, rs72928038-deleted naive CD8 T cells were 
more prone to differentiate into effector T cells in mice91.

A 4p15.2 locus for rheumatoid arthritis and type 1 diabetes har-
bored 21 candidate variants, each with low PIPs (<0.14). SCENT pri-
oritized a single variant rs35944082 in T cells and fibroblasts only 
within the arthritis-tissue dataset from inflamed synovial tissue 
(Fig. 4b). SCENT linked this variant to RBPJ, which was the third clos-
est gene located 235 kb away. This variant-gene link was supported by 
promoter-capture Hi-C data in hematopoietic cells92 and by H3K27ac 
HiChIP data in T cells68. The RBPJ transcription factor is critical for 
NOTCH signaling, which has been implicated in rheumatoid arthritis 
tissue inflammation through functional studies93,94. Rbpj knockdown in 
mice resulted in abnormal T cell differentiation and disrupted regula-
tory T cell phenotype95,96, consistent with a plausible role in autoim-
mune diseases. Intriguingly, we did not observe this enhancer–gene 
link in T cells from peripheral blood mononuclear cells (PBMC), blood 
nor in EpiMap. ABC map prioritized another variant, rs7441808, at this 
locus and linked it nonspecifically to 16 genes including RBPJ, making 
it difficult to define the causal gene. The Hi-C and H3K27ac HiChIP 
data nominated the gene RBPJ, but due to the limited resolution of the 
contact maps, they could not prioritize a single causal variant.

As an example of the power of SCENT to build enhancer–gene 
maps from disease-critical tissues, we examined single-cell data from 
pituitary63. We assessed a 11p14.1 locus for multiple gynecological traits 
(endometriosis, menorrhagia, ovarian cyst and age at menopause). 
Our map connected rs11031006 to FSHB (Fig. 4c), which is specifically 
expressed in the pituitary72,97 and enables ovarian folliculogenesis98. 
Rare FSHB variants cause autosomal recessive hypogonadotropic 
hypogonadism99. Multimodal data from other tissues and bulk-based 

methods were unable to prioritize this variant since they missed pitui-
tary, the most disease-relevant tissue. These results underscored the 
importance of creating enhancer–gene links using causal cell types, in 
the instances where links exist only in disease-relevant tissues.

Rare disease variants and somatic mutations within SCENT 
enhancers
Having established SCENT’s utility in defining causal variants and genes 
in complex diseases, we examined rare noncoding variants causing 
Mendelian diseases. Currently, causal mutations can be identified in 
only ~30–40% of patients with Mendelian diseases100–102. Consequently, 
many variants in cases are annotated as variants of uncertain signifi-
cance. The variants of uncertain significance annotation is especially 
challenging for noncoding variants. We examined the overlap of clini-
cally reported nonbenign noncoding variants by ClinVar103 (400,300 
variants in total) within SCENT enhancers. The SCENT enhancers har-
bored 2.0× ClinVar variants on average than the ATAC regions with the 
same genomic length (Supplementary Fig. 7). This density of ClinVar 
variants was 3.2× and 12× larger than that in ENCODE cCREs and all non-
coding regions, respectively. We defined 3,724 target genes for 33,618 
noncoding ClinVar variants (Supplementary Table 5). As illustrative 
examples, we found 40 noncoding variants linked to LDLR gene causing 
familial hypercholesterolemia 1 (ref. 103), 3 noncoding variants linked 
to IL10RA causing autosomal recessive early-onset inflammatory bowel 
disease 28 (Fig. 4d)104, and an intronic variant rs1591491477 linked to 
ATM gene causing hereditary cancer-predisposing syndrome103.

We also used SCENT to connect noncoding somatic mutation 
hotspots to target genes. Recently, somatic mutation analyses across 
the entire cancer genome revealed possible driver noncoding events105. 
Among 17 noncoding mutation hotspots in leukemia, SCENT enhancers 
from blood-related cell types included 12 hotspots (Supplementary 
Table 6). SCENT enhancer–gene linkage linked those hotspots to known 
driver genes (for example, BACH2, BCL6, BCR, CXCR4 (Fig. 4e) and IRF8 
in leukemia). In some instances, SCENT nominated different target 
genes for these mutation hotspots from those based on ABC model 
used in the original study. For example, SCENT connected a somatic 
mutation hotspot in leukemia at chr14:105568663-106851785 to immu-
noglobulin heavy chain related genes such as IGHA1, which might be 
more biologically relevant than ADAM6 nominated by ABC model. 
These results implicate broad applicability of SCENT for annotating 
human variations in noncoding regions.

Augmenting SCENT enhancer–gene maps with more samples 
and cells
While the number for enhancer–gene links by SCENT was smaller than 
that by bulk-tissue-based methods, this might be a function of current 
limited sample sizes. By downsampling of our multimodal single cell 
dataset, we observed that the number of significant gene–peak pairs 
increased linearly to the number of cells per cell type in a given data-
set, suggesting that SCENT will be even better powered as the size of 
multimodal datasets increases (Supplementary Fig. 8).

In SCENT association, we used cells from a specific cell type to 
identify cell-type-specific gene regulation. While association across 
cells from different cell types might increase the number of signifi-
cant peak–gene linkages due to greater variance in chromatin acces-
sibility and gene expression, this strategy could yield false-positive 
enhancer–gene associations by increasing the chances of connecting 
enhancers that are merely ‘correlated’ with gene expression (Extended 
Data Fig. 10a). By simulation and real data analyses, we confirmed 
that the cell-type-specific analysis was better calibrated to reject false 
enhancer–gene links by correlation and powered to detect experimen-
tally validated enhancer–gene links, while it was less powered to detect 
promoter–gene links when compared with multiple-cell-type analysis 
(Supplementary Note 3 and Extended Data Fig. 10b–e). We anticipate 
that we might be able to obtain even higher signal-to-noise ratio with 
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more fine-grained cell-state-specific analyses in the future as better 
powered datasets with more cells become available; we conjecture that 
in these datasets there will be fewer false negatives while maintaining 
the high precision of enhancer–gene calls.

Discussion
We presented a statistical method, SCENT, to create a cell-type-specific 
enhancer–gene map from single-cell multimodal data. Single-cell 
RNA-seq and ATAC–seq are both sparse and have variable count dis-
tributions, which requires nonparametric bootstrapping to connect 
chromatin accessibility with gene expression. The SCENT model dem-
onstrated well-controlled type I error, outperforming commonly used 
statistical models. SCENT mapped enhancers that showed high enrich-
ment for putative causal variants in eQTLs and GWAS and outperformed 
previous methods. Despite using substantially fewer samples, enhanc-
ers defined by SCENT had equivalent or higher enrichment for causal 
variants than bulk-tissue-based methods with many samples. SCENT 
benefits from modeling at the single-cell level instead of obscuring 
associations by aggregating cells into individual samples.

As limitations, first, SCENT enhancer–gene maps had relatively 
fewer enhancers compared to other resources (Fig. 2a). However, a 
linear relationship between the number of cells and the number of 
significant SCENT peak–gene links (Supplementary Fig. 8) indicates 
that application of SCENT to larger datasets will expand the current 
enhancer–gene map. In contrast, bulk-tissue-based enhancer–gene 
map might be more challenging to expand given the number of samples 
required. Second, SCENT focuses on gene cis-regulatory mechanisms 
to fine-map disease causal alleles. However, there could be other causal 
mechanisms, such as alleles that act through trans-regulatory effects, 
splicing effects or post-transcriptional effects106. Third, to prove the 
causality of the alleles prioritized by SCENT, experimental validation 
using gene editing technology107–109 is necessary. Fourth, due to Poisson 
regression and bootstrapping, SCENT is more computationally inten-
sive than the previous methods (for example, 1.5 × 107 CPU seconds 
in SCENT, 2.5 × 105 in Signac, and 2.2 × 102 in ArchR; Supplementary 
Table 7). We implemented multi-threading and parallelization options 
in SCENT, which lead to linearly faster computation but at the cost of 
additional computational resources. Algorithmic improvements, such 
as downsampling or aggregating cells, may be useful for extremely 
large datasets.

We argue that the real utility of SCENT is that it enables the con-
struction of disease-tissue-relevant enhancer–gene maps. Multimodal 
single-cell data can be obtained from a wide range of primary human 
tissues. It can be applied to those that are difficult to disaggregate 
since these multimodal data can be obtained from nuclear material 
without tissue disaggregation. Therefore, it is possible to build relevant 
tissue-specific enhancer–gene maps that are necessary to understand 
disease causal mechanisms. For example, understanding the FSHB 
locus in gynecological traits specifically required a pituitary map, 
and RBPJ locus in rheumatoid arthritis specifically required a synovial 
tissue map.

In summary, SCENT is a robust, versatile method to define causal 
variants and genes in human diseases.
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Methods
Ethics statement
This study complies with all relevant ethical regulations as outlined and 
approved by the institutional review board of Mass General Brigham 
(protocol approval number 2021P001846) and the institutional review 
board of the Hospital for Special Surgery (#2014-233). Written informed 
consent was obtained from all study participants.

Data and sample in arthritis-tissue dataset
Synovial tissues from patients with rheumatoid arthritis and osteoar-
thritis were collected from synovectomy or arthroplasty procedures 
followed by cryopreservation110. For rheumatoid arthritis samples, we 
examined histologic sections of synovial tissue and selected samples 
with inflammatory features. Sex and age of participants can be found 
in Supplementary Table 8. Next, cryopreserved synovial tissue frag-
ments were dissociated by a mechanical and enzymatic digestion110, 
followed by flow sorting to enrich for live synovial cells. For each tis-
sue sample, the viable cells were isolated and lysed to extract and load 
approximately 10,000 nuclei according to manufacturer protocol (10x 
Genomics). Joint single-cell (sc)RNA-seq and scATAC–seq libraries were 
prepared using the 10x Genomics Single Cell Multiome ATAC + Gene 
Expression kit according to manufacturer’s instructions. Libraries were 
sequenced with paired-end reads on an Illumina Novaseq to a target 
depth of 30,000 read pairs per nucleus both for messenger RNA and for 
ATAC libraries. scRNA-seq fastq files were inputted into the Cell Ranger 
ARC pipeline (version 2.0.0) from 10x Genomics to generate barcoded 
count matrix of gene expression. For the scATAC–seq fastq files, we 
used Cell Ranger ARC to process barcodes and to map the reads to the 
hg38 genome by BWA-MEM with default parameters. To deduplicate 
reads from polymerase chain reaction amplification bias within a cell 
while keeping reads originating from the same positions but from dif-
ferent cells, we used in-house scripts. More detailed information on 
data and QC steps is described in ref. 58.

Data acquisition and QC of single-cell multimodal datasets
In addition to our arthritis-tissue multimodal dataset, we down-
loaded all publicly available multimodal RNA-seq/ATAC–seq datasets 
from adult human tissues (ndataset = 9, as of April 2022). We processed 
the downloaded matrices of RNA-seq and ATAC–seq data and  
fragment files if available by using Signac (version 1.9.0), without 
re-aligning the original reads to reference genome due to lack of 
availability of raw sequence data. We applied QC to both the nuclear 
RNA data and the ATAC data based on RNA counts, ATAC fragments, 
nucleosome signal and TSS enrichment. We defined the QC threshold 
based on the distribution of these metrics in each of the datasets 
as described in Supplementary Table 9. We only kept cells that had 
passed QC in both RNA-seq and ATAC–seq. Then to identify open 
chromatin regions (peaks), we used macs2 (version 2.2.7.1) to call open 
chromatin peaks using post-QC ATAC–seq data. We thus obtained 
count matrices of gene expression and ATAC peaks with correspond-
ing cell barcodes. When cell barcodes after the QC from original 
publications were available or when fragment files are unavailable, 
we used the downloaded post-QC matrices for downstream analyses. 
Gene expression counts were normalized using the NormalizeData 
function (Seurat111 version 4.3.0), scaled using the ScaleData function 
(Seurat), and batch corrected using Harmony112 (version 0.1.1). We  
visualized the cells in two low-dimensional embeddings with uni-
form manifold approximation and projection (UMAP) by using 20 
batch-corrected principal components from these normalized gene 
expression matrices (Fig. 1c). When original cell labels are provided 
by the authors, we used those labels to obtain broad cell type cat-
egories. When they are not available, we performed reference-query 
mapping by Seurat and PBMC reference object to define broad cell 
type labels. ATAC peak matrix was binarized to have 1 if a count is >0 
and 0 otherwise.

SCENT method
We defined cis-peaks as any peaks whose center is within the window 
±500 kb from a given gene body. We modeled the association between 
peak’s binarized accessibility and the target gene’s expression with 
Poisson distribution:

Ei ∼ Poisson(λi)

log (λi) = β0 + βpeakXpeak + β%mitoX%mito + βnUMIXnUMI + βbatchXbatch
(1)

where Ei is the observed expression count of ith gene, and λi is the 
expected count under Poisson distribution. βpeak indicates the effect of 
chromatin accessibility of a peak on ith gene expression. β%mito, βnUMI and 
βbatch each represents the effect of covariates, percentage of mitochon-
drial reads per cell as a measure of cell quality, the number of unique 
molecular identifiers (UMIs) in the cell, and the batch, respectively. To 
empirically assess error and significance of βpeak for each peak–gene 
combination, we used bootstrapping procedures. We resampled cells 
with replacement in each bootstrapping procedure and re-estimated 
β′peak within those resampled cells. We repeated this procedure N times, 
where we adaptively increased N (that is, the total number of bootstrap-
ping) from at least 100 and up to 50,000, depending on the significance 
of βpeak in each chunk of bootstrapping trials to reduce the computational 
burden. After N times of bootstrapping, we assessed the distribution of 
N β′peak s against null hypothesis (β′peak = 0) to derive the significance of 
βpeak (that is, two-sided bootstrapping-based P value for this peak–gene 
combination by counting the instances where the statistics are equal or 
more extreme than the null hypothesis of β′peak = 0; Extended Data Fig. 2).

To avoid spurious associations from rare ATAC peak and rare gene 
expression, we quality controlled the cis-peak–gene pairs we test so 
that both peak and gene should have been expressed in at least 5% of 
the cells we analyze. We finally defined a set of significant peak–gene 
pairs for each cell type based on bootstrapping-based P values and 
FDR correction for multiple testing (Benjamini–Hochberg correction).

When we tested the calibration of statistics from SCENT or other 
regression strategies (Extended Data Fig. 1), we used null dataset where 
we randomly permuted cell labels in the ATAC–seq and ran the regres-
sion model we tested.

ArchR peak2gene and Signac LinkPeaks method
We also analyzed single-cell multimodal datasets with ArchR49 (version 
1.0.2) and Signac46,50 (version 1.9.0), which both have a function to define 
peak–gene linkages. In brief, ArchR takes multimodal data and creates 
low-overlapping aggregates of single cells based on k-nearest neighbor 
graph. Then it correlates peak accessibility with gene expression by 
Pearson correlation of aggregated and log2-normalized peak count 
and gene count. Signac computes the Pearson or Spearman correlation 
coefficient r (corSparse function in R) for each gene and for each peak 
within 500 kb of the gene TSS. Signac then compares the observed cor-
relation coefficient with an expected correlation coefficient for each 
peak given the guanine–cytosine content, accessibility and length of the 
peak. Signac defines P value for each gene–peak links from the z score 
based on this comparison. We ran both methods on arthritis-tissue 
dataset with default parameters. We output statistics for all peak–gene 
pairs we tested without any cutoff for correlation r or P values. To obtain 
significant peak–gene linkages in ArchR and Signac that are comparable 
with those defined by SCENT with FDR <10%, we used the FDR value in 
the output from the peak2gene function of ArchR software and selected 
any linkages with FDR <10% as a significant set of linkages. Because 
Signac does not directly output FDR values, we computed FDR using P 
values in the output from Signac LinkPeaks function (either method = 
‘pearson’ or method = ‘spearman’) by Benjamini–Hochberg correction 
and used this FDR to define a significant set of linkages with FDR <10%. 
We thus defined significant peak–gene linkages as those with FDR <10% 
and used varying correlation r to assess the precision and recall in the 
causal variant enrichment analysis (see later sections in Methods).
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Because ArchR requires fragment files from ATAC–seq to run the 
basic functions, we ran ArchR and Signac for eight multimodal datasets 
in which fragment files are available.

Replication across datasets
Since we have the same immune-related cell types across different mul-
timodal datasets, we evaluated the concordance of enhancer–gene map 
in a discovery dataset (arthritis-tissue dataset) when compared with 
other replication datasets including immune-related cell types (Public 
PBMC, NeurIPS, SHARE-seq and NEAT-seq datasets). To this end, we 
used the most stringent FDR threshold for defining an enhancer–gene 
map in arthritis-tissue dataset that had the largest number of significant 
peak–gene linkages (FDR <1%). We then used more lenient threshold 
for defining an enhancer–gene map in replication datasets (FDR <10%), 
which is a similar strategy used in assessing replication in GWAS. For 
each cell type and for each replication dataset, we took the intersec-
tion of enhancer-gene links defined as significant in both datasets. We 
assessed the directional concordance (that is, concordance of the sign 
of βpeak) and the Pearson’s correlation r of βpeak between the discovery 
and the replication for these peak–gene pairs. We then performed the 
same analysis for enhancer-gene map from ArchR and Signac software.

Conservation score analysis
To compare the evolutional conservation across species between our 
annotated peaks and the other peaks, we used phastCons66 score. We 
downloaded the phastCons score for multiple alignments of 99 verte-
brate genomes from ref. 113. We lifted them over to GRCh38 by LiftOver 
software (version 2016). We used SCENT results for arthritis-tissue, 
Public PBMC and NeurIPS for conservation score analysis as representa-
tive datasets with the largest numbers of cells. Because each gene should 
have variable functional importance and conservation, we assessed 
each gene separately. For each gene, we took (1) an annotation of interest 
for the gene and (2) all cis-noncoding regions (<500 kb from a gene), 
and computed the mean phastCons score of each of two sets of the 
peaks. As annotations to be tested, we used (a) exonic regions of the 
gene, (b) SCENT peaks for the gene and (c) all ATAC peaks in cis-regions 
from the gene (<500 kb). Then, we took the difference between two 
mean differences (ΔphastCons score), and computed the mean differ-
ences across all the genes (mean ΔphastCons score) as follows:

meanΔphastCons score

= 1
ngene

∑
gene

(phastConsg,in_annot − phastConsg,noncoding) .

By bootstrapping the genes, we calculated the 95% CI of the mean 
ΔphastCons score. If this metric is positive, that indicates that the 
annotated regions are more conserved than noncoding regions.

We also calculated similar ΔphastCons score by comparing the SCENT 
peaks with TSS-distance-matched non-SCENT peaks in each dataset.

meanΔphastCons score

= 1
ngene

∑
gene

(phastConsg,peak_in_SCENT − phastConsg,peak_non_SCENT_matched)

By bootstrapping the genes, we again calculated the 95% CI of 
the mean ΔphastCons score. If this metric is positive, that indicates 
that SCENT peaks are more conserved than TSS-distance-matched 
non-SCENT peaks.

Construction of a set of TSS-matched non-SCENT peaks
To assess the effect of TSS distance when comparing SCENT peaks with 
non-SCENT peaks, we matched each one of the SCENT peak–gene pairs 
to one non-SCENT peak–gene pair, where the peak had the most similar 
TSS distance to the same gene among all the ATAC peaks in cis in each 
of the dataset. We confirmed that the resulting TSS-distance-matched 
non-SCENT peak–gene pairs demonstrated the similar distributions of 

TSS distance when compared with the SCENT peak–gene pairs (Sup-
plementary Fig. 3b).

Gene’s constraint and the number of significant SCENT peaks 
for a gene
We sought to investigate the relationship between the number of signifi-
cant SCENT peaks for each gene and the gene’s evolutionary constraint. 
We used pLI (the probability of being loss-of-function intolerant) and 
LOEUF as metrics for the gene’s loss-of-function intolerance within human 
population. We downloaded both pLI and LOEUF scores from gnomAD 
browser114. We inverse-normal transformed the raw number of significant 
SCENT peaks for each gene, since the raw number of significant SCENT 
peaks for each gene is skewed toward zero (Extended Data Fig. 4a). We per-
formed linear regression between the normalized number of significant 
SCENT peaks and pLI or LOEUF score with accounting for gene length, 
which could be potential confounding factor for pLI and LOEUF69,70.

Validation with CRISPR-Flow FISH data
To validate our SCENT enhancer–gene links, we used published 
CRISPR-Flow FISH experiments as potential ground-truth positive 
enhancer element-gene links and negative enhancer element–gene links. 
We downloaded the experimental results from the Supplementary Table 5 
of original publication39 conducted in multiple cell lines and cell types 
(K562, Jurkat, THP1, GM12878, BJAB, NCCIT, hepatocytes and LNCAP). We 
used ‘Perturbation Target’ as candidate enhancer elements. We defined 
283 positive enhancer element–gene links when they are ‘TRUE’ for ‘Regu-
lated’ column (that is, the element–gene pair is significant and the effect 
size is negative) and 5,472 negative enhancer element–gene links when 
they are ‘FALSE’ for ‘Regulated’ column. We lifted them over to GRCh38 
and obtained final sets of 278 positive links and 5,470 negative links.

We used the SCENT enhancer–gene maps from eight multimodal 
datasets, excluding SHARE-seq dataset in which we were unable 
to perform statistical enrichment test due to low overlap with the 
designed target element–gene pairs in the CRISPR-Flow FISH experi-
ments. For each dataset, we used ‘bedtools (version 2.26.0) intersect’ 
to categorize SCENT peak–gene links and non-SCENT ATAC peak–
gene pairs into either CRISPR-positive or CRISPR-negative groups, 
based on whether these peaks overlapped with positive or negative 
CRISPR-Flow FISH links for the same gene (Supplementary Table 3). We 
finally performed two-sided Fisher’s exact test to assess the enrichment 
of CRISPR-positive links within SCENT peak–gene links in each dataset.

Validation with H3K27ac HiChIP data
To assess if the SCENT enhancer–gene linkage is more likely within the 
contact map of active enhancers and target genes constructed from 
H3K27ac HiChIP experiment, we downloaded high-confidence contact 
loops by Hi-C combined with enhancer activity marked by H3K27ac 
level in naive T cells, Th17 T cells and regulatory T cells from Supplemen-
tary Table 2 of ref. 68. We lifted the genomic coordinates to GRCh38 in 
each cell type, and annotated the promoter regions with gene names to 
be used as putative target genes if they fall within 1 kb from gene’s TSS. 
We took the union of the enhancer–promoter contacts across these 
three cell subtypes as experimentally validated T cell linkage. We ana-
lyzed six datasets that included T cells (that is, arthritis-tissue, public 
PBMC, NeurIPS, Dogma-seq (stimulated and control) and NEAT-seq 
datasets) to test whether the T-cell-specific enhancer–gene linkage 
from SCENT was enriched for the H3K27ac HiChIP enhancer–gene links. 
We additionally combined the significant linkages across all six datasets 
to create union SCENT peak–gene linkages in T cells. For each dataset 
and the combined linkage, we used ‘bedtools intersect’ to categorize 
SCENT peak–gene links and non-SCENT ATAC peak–gene pairs based on 
whether these peaks overlapped with H3K27ac HiChIP contact loops for 
the same gene. We performed two-sided Fisher’s exact test to assess the 
enrichment of SCENT peak–gene links within H3K27ac HiChIP contact 
loops in each dataset and the combined dataset.
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Cell-type-specific SCENT tracks and aggregated SCENT tracks
For cell types with more than 5,000 cells across datasets, we concat-
enated SCENT peak–gene linkages across all the datasets to create 
cell-type-specific SCENT tracks. We collected a set of SCENT peak–gene 
linkages for the same cell type and used ‘bedtools merge’ function (for 
each gene) to obtain a union of SCENT peaks for each gene. Similarly, 
we created aggregated SCENT tracks across all the cell types and all 
datasets. We collected all sets of SCENT peak–gene linkages and used 
‘bedtools merge’ function (for each gene) to obtain a union of SCENT 
peaks for each gene across all the cell types and all datasets.

Causal variant enrichment analysis using eQTLs
We defined a causal enrichment for eQTL within SCENT enhancers and 
other annotations by using statistically fine-mapped variant–gene 
combinations from GTEx. We used publicly available statistics analyzed 
by CAVIAR software20, and selected variants with PIP >0.2 as putatively 
causal (fine-mapped) variants for primary analyses. For the primary 
enrichment analysis, we aggregated fine-mapped variants from all the 
49 tissues. For cell-type-specific SCENT enrichment analysis (Extended 
Data Fig. 6j), we used fine-mapped variants from each tissue separately. 
We intersected these putatively causal variants with our annotations. 
We then retained any variants which the linking method (SCENT, ArchR, 
Signac and Cicero) connected to the same gene as GTEx phenotype gene.

Enrichmentgene_i

=

#causal_var_in_annotgene_i
/∑ common_var_in_annotgene_i

#causal_vargene_i
/∑ common_var_in_cisgene_i

Overall Enrichment = 1
n

n
∑
i=1

Enrichmentgene_i

For each gene i (expression phenotype), we divided the number 
of putatively causal variants within an annotation normalized by the 
number of common variants within an annotation by the number of all 
causal variants for gene i normalized by the number of all common 
variants within cis-region from for gene i. To calculate common variants 
within annotation or within locus, we used 1,000 Genomes Project 
genotype. We selected any variants with minor allele frequency >1% in 
European population as a set of common variants to be intersected 
with each annotation. To derive Overall Enrichment score, we took the 
mean across all the genes.

To have further insights into precision and recall and compare 
against ArchR peak2gene and Signac LinkPeaks functions, we varied 
the threshold for defining a set of significant peak–gene linkages in 
each software (that is, FDR in SCENT {0.50, 0.30, 0.20, 0.10, 0.05, 0.02}, 
Peason’s correlation r {any, 0, 0.1, 0.3, 0.5, 0.7} in ArchR, and correlation 
score {any, 0, 0.05, 0.1, 0.15} in Signac). We used the same myeloid cells 
in the arthritis-tissue dataset and a set of eQTL fine-mapped variants 
in GTEx blood tissue for this benchmark across all three methods. We 
then used each set of peak–gene linkages to recalculate causal variant 
enrichment Overall Enrichment score (Fig. 3b).

We also assessed the impact of PIP threshold in defining a set of 
statistically fine-mapped variants on the causal variant enrichment 
analysis. To do so, we redefined the set of putative causal variants with 
more stringent PIP thresholds (PIP >0.5 and PIP >0.7), and re-computed 
the calculate causal variant enrichment Overall Enrichment score.

Distance from cis region to gene’s TSS and causal variant 
enrichment for eQTL
We sought to evaluate the effect of regulatory elements’ proximity to 
TSS on enrichment for eQTL causal variants. We created annotated 
genome regions based on TSS distance to a given gene (for example, 

within 1 kb, from 1 kb to 10 kb, and so on). We concatenated these ele-
ments across all 23,715 genes to create genome-wide annotations 
reflecting TSS proximity (Supplementary Fig. 5a). We used the eQTL 
fine-mapped variants with PIP >0.2 from GTEx for all tissues as putative 
causal variants. We computed Overall Enrichment described above as 
the degree of causal variant enrichment within these regulatory ele-
ments in each TSS distance bin.

Peak–gene linkage using Poisson regression alone
As other benchmarking for assessing the effect of the components of 
SCENT on the causal variant enrichment, we also created peak–gene 
linkage using the Poisson regression but without nonparametric boot-
strapping for the same dataset of myeloid cells in the arthritis-tissue 
dataset. We used the nominal P values for the term Xpeak from the Poisson 
regression (equation (1)) to perform FDR correction to obtain signifi-
cant peak–gene pairs using the Poisson regression alone. We then used 
the FDR thresholds {0.30, 0.20, 0.10, 0.05, 0.02, 0.01} for assessing the 
recall–precision tradeoffs as described in the previous section.

GWAS fine-mapping results
We used GWAS fine-mapping results in FinnGen release 6 (ref. 79) upon 
registration and publicly available GWAS fine-mapping results in UK 
Biobank80,115. For FinnGen traits, we downloaded all the fine-mapping 
results by SuSIE software22 and systematically selected any traits with 
case count >1,000. We then selected noncoding fine-mapped loci that 
did not include any nonsynonymous or splicing variants with PIP >0.5. We 
thus analyzed 1,046 traits and 5,753 loci in total after QC. For UK Biobank, 
we analyzed the fine-mapping results by SuSIE software for all 94 traits 
including binary and quantitative traits. Since the genomic coordinates 
for the UK Biobank fine-mapping results were hg19, we lifted them over 
to GRCh38 by using LiftOver software. We again selected noncoding 
fine-mapped loci that did not include any nonsynonymous or splicing 
variants with PIP >0.5. We thus analyzed 7,274 loci in total after QC.

We analyzed three additional autoimmune GWAS fine-mapping 
results for rheumatoid arthritis26, type 1 diabetes90 and inflammatory 
bowel disease29, given our special interest in immune-mediated traits. 
We similarly selected noncoding fine-mapped loci that did not include 
any nonsynonymous or splicing variants with PIP >0.5, and lifted the 
results over to GRCh38 by using LiftOver software. We defined 117 
loci for rheumatoid arthritis, 77 loci for type 1 diabetes and 86 loci for 
inflammatory bowel disease.

Causal variant enrichment analysis using GWAS
We defined causal variant enrichment statistics for GWAS within SCENT 
enhancers and other annotations by using statistically fine-mapped 
variants from FinnGen79 and UK Biobank80 that we described in the 
previous section. We selected variants with PIP >0.2 as putatively causal 
variants for primary analyses.

Enrichmenttrait_i

=

#causal_var_in_annottrait_i
/∑ common_var_in_annottrait_i

#causal_vartrait_i
/∑ common_var_across_locitrait_i

Overall Enrichment = 1
n

n
∑
i=1

Enrichmenttrait_i

For each trait i, we divided the number of putatively causal variants 
within an annotation (across all loci for trait i) normalized by the number 
of common variants within an annotation by the number of all causal vari-
ants for trait i normalized by the number of all common variants within 
all significant loci analyzed for the trait i. To calculate common variants 
within annotation or within locus, we again used 1000 Genomes Project 
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variants with minor allele frequency >1% in European population. To 
derive Overall Enrichment score, we took the mean across all the traits.

For each trait i and putative causal gene pair, we calculated the 
distance between the TSS of the gene and the most likely causal variant 
which had the largest PIP when multiple variants were nominated for a 
single gene by SCENT (Supplementary Fig. 6a). For each putative causal 
gene for the trait i, we also sorted all the genes on the basis of the dis-
tance between the gene’s TSS and the most likely causal variant (from 
the smallest to the largest). We then obtained the rank of the putative 
causal gene from SCENT among the sorted gene list to see how often 
the SCENT gene is the closest gene from the most likely causal variant.

Comparison with bulk-tissue-based regulatory annotation 
and enhancer–gene maps
We downloaded per-group EpiMap enhancer–gene links from ref. 116. 
We lifted the genomic coordinates to GRCh38 by using LiftOver software. 
When we assessed aggregated EpiMap enhancer–gene links across all 
the 31 tissue groups, we used ‘bedtools merge’ function for each gene to 
create a union of all enhancer–gene links (Fig. 3c,d). For tissue-specific 
enrichment analyses, we analyzed the 31 group-specific tracks separately 
(Extended Data Fig. 7a,b). To benchmark the precision and recall, we 
used EpiMap correlation scores to define variable sets of enhancer–gene 
links from EpiMap based on the threshold of EpiMap correlation score.

We downloaded ABC predictions in 131 cell types and tissues 
from ref. 117. We lifted the genomic coordinates to GRCh38 by using 
LiftOver software. When we assessed aggregated ABC enhancer–gene 
links across all the groups, we used ‘bedtools merge’ function for each 
gene to create a union of all enhancer-gene links across 131 cell types 
(Fig. 3c,d). For cell-type-specific analyses, we aggregated cell lines or 
cell types to be corresponding with our cell types and analyzed each 
of these tracks separately (B cell, T cell, myeloid cells and fibroblasts; 
Extended Data Fig. 7a,b). To benchmark the precision and recall, we 
used ABC scores to define variable sets of enhancer–gene links from 
ABC model based on the threshold of ABC score.

To assess precision and recall and compare against bulk-tissue 
based methods (that is, EpiMap and ABC model), we used sets of sig-
nificant peak–gene linkages in each method with varying thresholds 
(that is, FDR in SCENT {0.5, 0.3, 0.2, 0.1, 0.05, 0.02}, EpiMap correlation 
score {0, 0.4, 0.8, 0.9} in EpiMap, and ABC score {0, 0.05, 0.1, 0.2} for 
ABC model). We then used each set of peak–gene linkages to recalculate 
causal variant enrichment for GWAS (Fig. 3d).

We also assessed the impact of PIP threshold in defining a set of 
statistically fine-mapped variants on the causal variant enrichment 
analysis. To do so, we redefined the set of putative causal variants with 
more stringent PIP thresholds (PIP >0.5 and PIP >0.7), and recomputed 
the calculate causal variant enrichment Overall Enrichment score.

Comparison with other single-cell-based enhancer–gene maps
To compare the capability of identifying putative causal variants for 
GWAS between SCENT and previous single-cell-based enhancer–gene 
maps by ArchR or Signac (Extended Data Fig. 8c,d), we created an 
integrated enhancer–gene maps across available datasets for these 
methods. To this end, we used eight multimodal datasets (excluding 
NeurIPS dataset) in which fragment files for ATAC–seq in addition to 
count matrices of RNA-seq and ATAC–seq are available to run ArchR. 
For each of these methods (SCENT, ArchR and Signac), we took the 
union of significant enhancer–gene linkages with FDR <10% from eight 
datasets by using ‘bedtools merge’ function. We then calculated causal 
variant enrichment statistics for GWAS within SCENT, ArchR and Signac 
enhancers by using statistically fine-mapped variants from FinnGen 
and UK Biobank (PIP >0.2) as we described above.

caQTL analysis using scATAC–seq samples with genotype
As part of the AMP consortium, we generated an independent 
arthritis-tissue dataset with single-cell unimodal ATAC–seq data with 

genotype (n = 17; one sample without genotype data was excluded)58 to 
define caQTLs. We used two methods, binomial test for allele-specific 
chromatin accessibility and RASQUAL. Briefly, we genotyped donors 
in the AMP Network for rheumatoid arthritis and systemic lupus 
erythematosus including 17 donors in this study by using Illumina 
Multi-Ethnic Genotyping Array across three batches. We performed 
quality control of genotype by sample call rate >0.99, variant call rate 
>0.99, minor allele frequency >0.01, and PHWE > 1.0 × 10−6. We performed 
haplotype phasing with SHAPEIT2 software (2.727)118 and performed 
whole-genome imputation by using minimac3 software (version 
2.0.1)119 with a reference panel of 1000 Genomes Project phase 3 (ref. 
120). After imputation, we selected variants with imputation R2 > 0.7 as 
post-imputation QC. We next created a merged bam file of ATAC–seq 
for each donor and each cell type by aggregating all the reads. Using the 
imputed genotype for each donor and aggregated bam files for each 
donor and cell type, we applied WASP121 to correct any bias in read map-
ping toward reference alleles to accurately quantify allelic imbalance. 
We thus created a bias-corrected bam files for each donor and cell type.

For binomial tests for allele-specific chromatin accessibility, we 
ran ASEReadCounter module in GATK software (version 4.1.9.0)122 using 
the bias-corrected bam files as input to quantify allelic imbalance in 
heterozygous sites with read count >4 within ATAC peak counts. We first 
performed one-sided binomial tests in each donor, and meta-analyzed 
the statistics across donors by Fisher’s method if multiple donors shared 
the same heterozygous site. For RASQUAL, we created a VCF file contain-
ing both genotype dosage and allelic imbalance from ASEReadCounter. 
We quantified the read coverage for each peak and for each donor by 
‘bedtools coverage’ function. We created a peak by donor matrix with 
read coverage. We QCed samples with log(total mapped fragments) 
fewer than mean − 2 × standard deviation across samples in each cell 
type. We QCed peaks so that at least two individuals have any fragments 
for the peak. We then ran RASQUAL software with the inter-individual 
differences in ATAC peak counts (in the peak by donor matrix) and 
intra-individual allelic imbalance (in the VCF), with accounting for 
chromatin accessibility PCs (the first N components whose explained 
variances are greater than those from permutation result), 3 genotype 
PCs, sample site and sex as covariates. RASQUAL output chi-squared 
statistics and P values. We computed FDR from these raw P values by 
Benjamini & Hochberg correction on local multiple test burden (that 
is, the number of cis-SNPs in the region). To correct for genome-wide 
multiple testing, we ran the RASQUAL with random permutation, in 
which the relationship between sample labels and the count matrix was 
broken. Thus, we derived q values for each candidate caQTL.

We finally intersected these peaks with significant caQTL effect 
in each significance threshold with SCENT peaks and assessed causal 
variants enrichment within these peaks for GWAS as explained in the 
previous sections.

In the example SMAD3 locus, we visualized the allele-specific effect 
by creating an aggregated bam files for each donor and using Integra-
tive Genomics Viewer (Extended Data Fig. 9c). We also visualized the 
inter-individual effect by taking the residuals after regressing out the 
covariates from the logged count per million of the ATAC read coverage 
for the peak in each donor (Extended Data Fig. 9d).

ClinVar analysis
We downloaded the latest clinically reported variant list registered 
at ClinVar from ref. 123. We then screened the variants to exclude (1) 
exonic variants and (2) variants categorized as ‘benign’. We defined the 
ClinVar variant density as the number of the noncoding and nonbenign 
variants within each annotation × 1,000 divided by the total length 
(bp) of each annotation.

Somatic mutation analysis
We used a list of somatic noncoding mutation hotspots for leukemia 
in Supplementary Table 13 of the original publication105. We lifted 
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the genomic coordinates to GRCh38 by using LiftOver software. We 
then intersected the noncoding somatic mutation hotspots with our 
cell-type-specific SCENT peaks in immune cells (that is, T cells, B cells and 
myeloid cells). We compared the intersected elements’ target genes by 
SCENT with the ‘Annotate_Gene’ column from the original publication.

Downsampling experiments
To evaluate the effect of cell numbers on the statistical power in 
detecting significant SCENT enhancer–gene linkages, we performed 
downsampling experiments in fibroblast (the most abundant cell type 
in arthritis-tissue dataset, ncell = 9,905). We randomly samples cells 
(ncell = 500, 1000, 2,500, 5,000 and 7,500). We then applied SCENT to 
each of the subset groups of cells and defined significant peak–gene 
links with FDR <10%. We counted the number of significant peak–gene 
links in each of the subset groups of cells, and annotated peaks based 
on the distance to the TSS to the target gene.

Statistics and reproducibility
No sample data were excluded from the single-cell multimodal analy-
ses. Neither randomization, sample size predetermination nor blinding 
of investigators was applicable to this study.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available datasets were downloaded via Gene Expres-
sion Omnibus (accession codes GSE140203, GSE156478, GSE178707, 
GSE194122, GSE193240 and GSE178453) or web repository (https://
www.10xgenomics.com/resources/datasets?query=&page=1&confi
gure%5Bfacets%5D%5B0%5D=chemistryVersionAndThroughput&c
onfigure%5Bfacets%5D%5B1%5D=pipeline.version&configure%5Bhits
PerPage%5D=500&menu%5Bproducts.name%5D=Single%20Cell%20
Multiome%20ATAC%20%2B%20Gene%20Expression). The raw data 
for arthritis-tissue dataset (single-cell multimodal RNA/ATAC–seq and 
single-cell ATAC–seq) are deposited at the NIH Database of Genotypes 
and Phenotypes (dbGaP accession number phs003417.v1.p1) and the 
Gene Expression Omnibus (GEO accession number GSE243917).

Code availability
The computational scripts related to this manuscript are avail-
able at https://github.com/immunogenomics/SCENT (https://doi.
org/10.5281/zenodo.10452116)124.
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Extended Data Fig. 1 | Distribution of gene expression counts in single-cell 
RNA-seq and statistics from association between gene expression and 
chromatin accessibility under null simulation. a. In an example dataset 
of arthritis-dataset, mean gene count was strongly correlated with standard 
deviation of the gene count. b. The correlation between max expression count 
per gene (x-axis) and the mean naïve association chi-square values (χ2) from 
Poisson regression between gene expression and chromatin accessibility under 
null simulation (y-axis). c. The quantile-quantile (QQ) plot of two-sided P values 
from the Poisson regression between gene expression count and chromatin 
accessibility under null simulation. d. The QQ plot of two-sided P values from 
the negative binomial regression between gene expression count and chromatin 
accessibility under null simulation. e. The QQ plot of two-sided P values from 
the linear regression between log-normalized and inverse-normal-transformed 

gene expression and chromatin accessibility under null simulation. f. The QQ 
plot of two-sided P values estimated from bootstrapping based on the statistics 
distributions from the Poisson regression between gene expression count and 
chromatin accessibility under null simulation. g. The QQ plot of two-sided P 
values estimated from bootstrapping based on the statistics distributions from 
the negative binomial regression between gene expression count and chromatin 
accessibility under null simulation. h. Computational runtime benchmarking 
for Poisson regression with binarized ATAC-seq peak (red), negative binomial 
regression with binarized ATAC-seq peak (teal), and Poisson regression with non-
binarized ATAC-seq peak (blue). The values are relative to the computational time 
for Poisson regression, and bars are the mean across n=100 randomly selected 
peak-gene pairs. Horizontal lines (error bars) indicate one standard deviation 
from the mean.
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hypothesis (β′peak  = 0) to derive the significance of βpeak (that is, two-sided 
bootstrapping-based P value = Pbootstrap).
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Extended Data Fig. 3 | The QQ plot of SCENT P values by bootstrapping. We applied SCENT to each of 23 broad cell types from 9 single-cell multimodal datasets. 
Each QQ plot represents two-sided Pbootstrap values in each cell type in each dataset (a. arthritis-tissue, b. public PBMC, c. NeurIPS, d. SHARE-seq, e. Dogma-seq (control), 
f. Dogma-seq (stimulated) g. NEAT-seq, h. Brain, i. Pituitary.
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Extended Data Fig. 4 | Properties of SCENT peaks. a. The number of significant 
SCENT peaks per gene across genes we investigated in at least one dataset-cell 
type pair. b. The number of significant gene-peak pairs discovered by SCENT 
with FDR < 10% in each dataset (y-axis) as a function of the total number of 
ATAC-seq fragments in each dataset (x-axis), colored by the dataset. c. The 
number of significant gene-peak pairs discovered by SCENT with FDR < 10% in 
each dataset (y-axis) as a function of the total number of unique RNA molecules 
in each dataset (x-axis), colored by the dataset. d. The effect size correlation r 
by Pearson’s correlation between arthritis-tissue dataset and the other dataset 
for the same cell type (left) and the directional (sign) concordance between 

arthritis-tissue dataset and the other dataset for the same cell type (right). e. 
Fraction of overlap with ENCODE cCREs in SCENT (teal) or non-SCENT peaks 
(orange) in each dataset and random set of cis-non-coding regions (pink). f. The 
mean Δ phastCons score for SCENT with excluding promoter peaks (teal) and 
all cis-ATAC peaks with excluding promoter peaks (yellow) in each of the three 
example multimodal datasets. The bars indicate the 95% CI by bootstrapping 
genes (nbootstrap=1000). g. The mean Δ phastCons score between SCENT peaks and 
TSS-distance-matched non-SCENT peaks across all the genes. The bars indicate 
the 95% CI by bootstrapping genes (nbootstrap=1000).
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Extended Data Fig. 5 | Mutational constraint on genes with a high number 
of SCENT peaks. For each gene, the number of SCENT peaks were counted 
and binned as shown in the x-asis, and mutational constraint metric (pLI (the 
probability of being loss of function intolerant): a, LOEUF (the loss-of-function 

observed/expected upper bound fraction): b) for genes within each bin are 
shown as a violin plot on the y-axis. The dots indicate the mean score in each 
bin, and the error bars indicate one standard deviation from the mean. Each bin 
consists of 555-4071 genes in a and 568-4265 genes in b.
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Extended Data Fig. 6 | Causal variant enrichment for eQTLs. a. The mean 
causal variant enrichment for eQTL within SCENT peaks with excluding all 
promoters (teal) or cis-regulatory ATAC-seq peaks with excluding all promoters 
(yellow) in each dataset. b. The mean causal variant enrichment for eQTL within 
SCENT peaks (teal) or non-SCENT peaks with matching distance to TSS (pink). 
c. Comparison of the mean causal variant enrichment for eQTL (y-axis) among 
SCENT (teal), ArchR (pink), and Signac (purple) as a function of the number of 
significant peak-gene pairs at each threshold of significance by FDR in SCENT 
and correlation r in ArchR and Signac. d. Comparison of the mean causal variant 
enrichment for eQTL among SCENT, ArchR, and Signac as a function of the 
number of significant peak-gene pairs at each threshold of FDR in SCENT, ArchR 
and Signac. The ArchR results with > 180,000 peak-gene linkages are omitted. 
e. Comparison of the mean causal variant enrichment for eQTL among SCENT, 
ArchR, and ArchR filtered on RNA expression as a function of the number of 
significant peak-gene pairs. f. Comparison of the mean causal variant enrichment 

for eQTL among SCENT, Signac, and Signac filtered on RNA expression as a 
function of the number of significant peak-gene pairs. g. Comparison of the 
mean causal variant enrichment for eQTL among SCENT, the default Pearson’s 
correlation version of Signac, and the optional Spearman’s correlation version of 
Signac as a function of the number of significant peak-gene pairs. h. Comparison 
of the mean causal variant enrichment for eQTL among original SCENT (Poisson 
regression + non-parametric bootstrapping), Poisson-only strategy without 
bootstrapping, and Cicero (correlation method using sc-ATAC-seq alone) as 
a function of the number of significant peak-gene pairs up to 100,000 peak-
gene linkages. i. Comparison of the mean causal variant enrichment for eQTL 
between SCENT and Cicero peaks with adding all accessible promoter regions 
(1 kb regions from TSS) to account for potential promoter bias. j. Tissue-specific 
causal variant enrichment within SCENT peaks. The dots and lines are colored by 
the eQTL source tissue in GTEx that we assessed. In all panels, the bars indicate 
95% confidence intervals by bootstrapping genes (nbootstrap=1000).
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Extended Data Fig. 7 | Causal variant enrichment for GWAS. a and b. The mean 
causal variant enrichment for GWAS within cell-type-specific and aggregated 
SCENT enhancers (teal), ENCODE cCREs (pink), group-specific and aggregated 
EpiMap enhancers (red) and sample-specific and aggregated ABC enhancers 
(blue). GWAS results were based on FinnGen (a) and UK Biobank (b). The bars 
indicate 95% confidence intervals by bootstrapping traits (nbootstrap=1000). c. The 
mean causal variant enrichment for FinnGen GWAS (see Methods) within SCENT 
peaks with excluding all promoters (teal) or cis-regulatory ATAC-seq peaks with 
excluding all promoters (yellow) in each of the 9 single-cell datasets. The bars 

indicate 95% confidence intervals by bootstrapping traits (nbootstrap=1000). d. 
The mean causal variant enrichment for FinnGen GWAS (see Methods) within 
SCENT peaks (teal) or non-SCENT peaks with matching distance to TSS (pink) 
in each of the 9 single-cell datasets. The bars indicate 95% confidence intervals 
by bootstrapping traits (nbootstrap=1000). e. The fraction of known genes from 
Mendelian autoimmune diseases among all the genes identified by SCENT, 
EpiMap, and ABC model. The color of the bars indicates the cell types in each 
linking method.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Causal variant enrichment for GWAS and comparison 
with published bulk methods and single-cell methods. a. Comparison of the 
mean causal variant enrichment for FinnGen GWAS (y-axis) among SCENT (teal), 
EpiMap (red), and ABC model (blue) as a function of the number of significant 
peak-gene pairs (x-axis) at each threshold of significance. The bars indicate 95% 
confidence intervals by bootstrapping traits (nbootstrap=1000). b. We calculated 
the causal variant enrichment for FinnGen GWAS among SCENT (teal), EpiMap 
(reds), and ABC model (blues) by changing the PIP thresholds in defining putative 

causal variants from fine-mapping. The bars indicate 95% confidence intervals 
by bootstrapping traits (nbootstrap=1000). c and d. The mean causal variant 
enrichment for GWAS within SCENT enhancers (teal), ArchR (pink) and Signac 
enhancers (purple). GWAS results were based on FinnGen (c) and UK Biobank (d) 
using the FDR < 10% threshold in each software and eight benchmarking datasets 
(see Methods). The bars indicate 95% confidence intervals by bootstrapping 
traits (nbootstrap=1000).
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Extended Data Fig. 9 | SMAD3 locus in asthma GWAS. Rs17293632 in asthma 
GWAS (a) was prioritized and connected to SMAD3 gene by SCENT in myeloid 
cells (b). The panel a is a GWAS regional plot, with x-axis representing the 
position of each genetic variant and y-axis representing -log10(P) from GWAS 
(a two-sided P value). The rs17293632 has a significant caQTL effect, as shown 
in c and d. In panel c, the read coverage from single-cell ATAC-seq in each of 
donors with heterozygous genotype at this accessible region is presented, and at 
rs17293632, we observed allele-specific increased accessibility with C allele when 

compared T allele across donors. In panel d, normalized chromatin accessibility 
based on the read coverage for an individual after regressing out covariates is 
presented by the genotype of rs17293632 (CC, CT and TT). The horizontal bars 
within boxes indicate the median, and the lower and upper hinges represent 25% 
and 75% quantile. The upper whisker extends from the hinge to the largest value 
no further than 1.5 * inter-quartile range (IQR) from the hinge. The lower whisker 
extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. All 
individual points are plotted as dots.
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Extended Data Fig. 10 | Cells to be included in the regression framework. a. An 
example situation of correlated gene expression without biological regulatory 
function. b. Benchmarking models for statistical power to define biologically 
plausible peak-gene linkage over false-associations due to correlated genes. c. 
Benchmarking results regarding cells and covariates included in the SCENT 
regression model. The x-axis represents the number of statistically significant 
peak-gene linkages among 5,000 randomly selected peak-gene linkages in cis, 
and the y-axis represents the number of statistically significant peak-gene 
linkages in cis divided by the number of statistically significant peak-gene 
linkages in trans among 5,000 randomly selected peak-gene linkages on different 

chromosomes, as a proxy metric for capability of identifying regulatory elements 
over ‘correlated’ elements. Red dots indicate the analyses conducted in all cells 
including different cell types (n = 8,881), whereas blue dots indicate the analyses 
conducted in only T cells (n = 8,881). d and e. False positive rate and precision for 
peak-gene linkages from analyses conducted in all cells (teal) or in only T cells 
(orange) by using experimentally validated enhancer-gene linkages (that is, 
CRISPR-Flow FISH data in d and H3K27ac data in e). False negative rate and 
precision were defined as follows: 

false negative rate = # false negative/(# true positive+# false negative) =
1− recall .
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The publicly available datasets were downloaded via Gene Expression Ombibus (accession codes: GSE140203, GSE156478, GSE178707, GSE194122, GSE193240, 
GSE178453) or web repository (https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5Bfacets%5D%5B0%
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single-cell ATAC-seq) is deposited at the NIH Database of Genotypes and Phenotypes (dbGaP accession number: phs003417.v1). The reference human genome 
GRCh38 genome was used as a reference for read alignment (Ensemble re lease 92).
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Sample size We use all samples post QC for multiome data, both in arthritis-tissue dataset and also in publicly available datasets. We performed 
downsampling experiments to confirm the statistical power of SCENT we expect at a given number of cells in the multiome data.

Data exclusions All samples were selected based on quality-control criteria in each cohort, which is summarized in the Method section.

Replication We compared high replication rate of SCENT across independent different datasets, which is summarized in Supplementary Table 2. 

Randomization We did not need to use randomization in this study as we do not allocate samples into experimental groups. All samples after QC were 
included in the analysis.

Blinding We did not apply blinding of the samples because no intervention was conducted in our study.

Reporting for specific materials, systems and methods
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Population characteristics Synovial tissue samples from 11 RA patients and 1 OA patient were collected from Brigham and Women’s Hospital (BWH) and 
the Hospital for Special Surgery (HSS) for use in the multimodal ATAC + Gene Expression experiments. RA and OA samples 
with high levels of lymphocyte infiltration (as scored by a pathologist on histologic sections) were identified as “inflamed” and 
used for downstream analysis. The population characteristics are summarized in Supplementary Table 8.

Recruitment Synovial tissue samples from 11 RA patients and 1 OA patient were collected and cryopreserved as part of a larger study 
cohort by the AMP Network for RA and SLE.

Ethics oversight This study was performed in accordance with protocols approved by the Brigham and Women’s Hospital and the Hospital for 
Special Surgery institutional review boards.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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