
ARTICLE

Dimensionality reduction reveals fine-scale
structure in the Japanese population with
consequences for polygenic risk prediction
Saori Sakaue 1,2,3, Jun Hirata1,4, Masahiro Kanai 1,2,5, Ken Suzuki 1, Masato Akiyama2,6, Chun Lai Too 7,8,

Thurayya Arayssi9, Mohammed Hammoudeh10, Samar Al Emadi10, Basel K. Masri11, Hussein Halabi12,

Humeira Badsha13, Imad W. Uthman 14, Richa Saxena 15,16, Leonid Padyukov 8, Makoto Hirata 17,

Koichi Matsuda 18, Yoshinori Murakami 19, Yoichiro Kamatani 2,20 & Yukinori Okada 1,21,22✉

The diversity in our genome is crucial to understanding the demographic history of worldwide

populations. However, we have yet to know whether subtle genetic differences within a

population can be disentangled, or whether they have an impact on complex traits. Here we

apply dimensionality reduction methods (PCA, t-SNE, PCA-t-SNE, UMAP, and PCA-UMAP)

to biobank-derived genomic data of a Japanese population (n= 169,719). Dimensionality

reduction reveals fine-scale population structure, conspicuously differentiating adjacent

insular subpopulations. We further enluciate the demographic landscape of these Japanese

subpopulations using population genetics analyses. Finally, we perform phenome-wide

polygenic risk score (PRS) analyses on 67 complex traits. Differences in PRS between the

deconvoluted subpopulations are not always concordant with those in the observed phe-

notypes, suggesting that the PRS differences might reflect biases from the uncorrected

structure, in a trait-dependent manner. This study suggests that such an uncorrected

structure can be a potential pitfall in the clinical application of PRS.
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We humans are unprecedentedly thriving mammals in
the long history of life on earth. Anatomically modern
humans migrated out of Africa1, outlived all other

hominins2, and spread around the globe in a surprisingly short
period. We now live from high mountains to deep forests, from
vast deserts in continents to tiny islands in the ocean. The history
of migration, admixture, and adaptation shapes the diversity
recorded in the human genome. The ever-expanding knowledge
from genomic analysis of worldwide populations revealed the
differences that exist among us. People living in extreme envir-
onments demonstrate how humans can be genetically adapted to
the cold3, high altitude4,5, or diving into the sea6. However, we do
not yet know to what degree our genomes differ due to subtle
environmental and regional diversity. We have little knowledge
about whether neighboring two regions are different just cultu-
rally and linguistically, or also genetically.

We can decipher our origin and diversity through genomic dif-
ferences. Since the genomic differences among individuals are mil-
lions in dimension, we need a practical method to reduce this
dimension and render it understandable for humans. Principal
component analysis (PCA), a classical dimensionality reduction
method, has been a method of choice to uncover the large popu-
lation structure7,8. This linear transformation, however, was not
sufficient to fully capture the fine and subtle genomic structure.
Additional non-linear dimensionality reduction methods, t-dis-
tributed stochastic neighbor embedding (t-SNE) and its combina-
tion with PCA (PCA–t-SNE), were applied, and exhibited the ability
to provide interpretations of complex population structures and
disease biology9–11. Recently, uniform manifold approximation and
projection (UMAP) was developed as a novel non-linear dimen-
sionality reduction method capable of clearly distinguishing neigh-
boring clusters while retaining the global structure. UMAP and its
combination with PCA (PCA–UMAP) are also computationally fast
and scalable for application to large genomic datasets12. These novel
dimensionality reduction methods should be applied to the relatively
understudied diverse populations worldwide to uncover the
unknown fine-scale structure.

One of the overriding tasks of genomic study is to improve
healthcare through accurate genetic prediction. While this effort
clearly requires genomic knowledge of worldwide populations,
the current genomic studies are largely biased toward the Western
continental populations13. Determining the subtle structural dif-
ferences of diverse ancestries, such as neighboring regions or
islands within a population, would be critical to avoid future
health disparities, because these genomic structures within a
population have unexpectedly been raised as potential con-
founding factors in the clinical prediction of health risks14. Most
notably, much debate exists on (i) how such genomic structures
would be reflected on the estimation of the polygenic risk score
(PRS) of complex human traits and (ii) whether such cryptic
structures in PRS can be corrected.

Japan, located far east of Africa and Europe as one of the ends
of the human journey, has experienced a unique demographic
history. One hypothesis assumes that two waves of human
migration into Japan occurred: one from Southeast Asia 40,000
years ago, followed by another from the Korean Peninsula 3000
years ago15,16. Few admixture events have taken place after these
migratory waves, and the population has been kept isolated
within the mainland and the surrounding thousands of small
islands. These unique situations represent an ideal scenario for
the investigation of the fine-scale structure of neighboring yet
isolated regions, which might be in contrast to admixed popu-
lations living on a continent.

Here, we comprehensively apply a series of linear and non-
linear dimensionality reduction methods (PCA, t-SNE, PCA–t-
SNE, UMAP, and PCA–UMAP) to large-scale biobank-derived
genomic data in the Japanese population (n > 170,000), to
deconvolute the genetic differences within this population
(Fig. 1a, b). We further aim to interpret the identified sub-
populations using other population genetics methods (Fig. 1c).
Finally, we quantify the differences in PRS related to the subtle
population structures (Fig. 1d). In a phenotype-dependent man-
ner, our results demonstrate that such biases in PRS would not be
fully correctable even with pre-detection of the cryptic structures.
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Fig. 1 Overview of this study. a Japanese individuals from seven major regions of Japan were genotyped. Phased and imputed genotypes were linkage
disequilibrium (LD)-pruned and formatted as an input for dimensionality reduction methods. b We applied five dimensionality reduction methods to the
genotype. We further applied PCA–UMAP to the subpopulations in an attempt to identify even finer substructures. c We performed fineSTRUCTURE,
ADMIXTURE, and phylogenetic analyses in each subpopulation identified in b. d We investigated how the identified subpopulations affected polygenic risk
predictions in a phenome-wide scale.
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Results
Dimensionality reduction methods to the Japanese population.
Japan consists of more than 6000 islands located around the
mainland. The population has experienced few admixture events
after the two waves of human migration from the Eurasian
Continent17. Separated by the sea, the Japanese people have been
recognized as a demographically homogeneous and isolated
population. However, there exist diverse cultural and linguistic
differences from region to region and from island to island even
within the Japanese population. To uncover the finest-scale
structure within the Japanese population, we first applied five
dimensionality reduction methods to the large-scale Japanese
genotype data (n= 169,719): (i) PCA, an orthogonal linear
transformation which projects the genotype data into the new
reduced dimensional space such that the greater variance comes in
an order; (ii) t-SNE, a non-linear dimensionality reduction
method that converts similarities between data points to joint
probabilities and minimizes the Kullback–Leibler divergence
between the joint probabilities of the low-dimensional embedding
and the high-dimensional data18; (iii) PCA–t-SNE, an application
of t-SNE for principal components of genotype data; (iv) UMAP, a
novel non-linear dimensionality reduction technique based on
Riemannian geometry and algebraic topology to model and pre-
serve the high-dimensional topology of data points in the low-
dimensional space; and (v) PCA–UMAP, an application of UMAP
for principal components of genotype data to be computationally
more advantageous and statistically less noisy (PCA–UMAP)12,19.

The genetic encoding of the 91,551 variants, which were
pruned based on the linkage disequilibrium (LD) structure, was
deconvoluted down for illustration in a two-dimensional space
(Fig. 2). The distribution of the individuals projected onto the
two-dimensional space by PCA largely reflected the geographic
distribution. The PC1 corresponded to the northeast-to-
southwest geographic axis, which separated the Japanese

population into two major clusters, as reported previously16,20.
The “Hondo” cluster consisted mainly of the residents of the
mainland (the four major Japanese islands, which included six
regions in this study [i.e., Hokkaido, Tohoku, Kanto-Koshinetsu,
Chubu-Hokuriku, Kinki, and Kyushu]; Supplementary Fig. 1).
The “Ryukyu” cluster consisted mainly of the residents of
Okinawa and part of Kyushu. Additionally, a small clear outlier
cluster from the two large clusters was observed, as highlighted in
green in Fig. 2b. As the individuals within this cluster were
recruited mostly from the Hokkaido region, they are termed the
“Hokkaido-Ainu” population, henceforth; the “Ainu” is the
Japanese indigenous population of the northernmost island,
which has undergone a different demographic history from the
mainland population as described previously15.

Among the five methods of dimensionality reduction, UMAP
and PCA–UMAP clearly and discretely distinguished individuals
in the mainland from those in the surrounding islands and
Hokkaido-Ainu district (termed the “non-mainland” population
henceforth). Conversely, the continuous or juxtaposed distribu-
tion of individuals observed in PCA, t-SNE, and PCA–t-SNE
made it difficult to distinguish them without ambiguity. In
PCA–UMAP, even the northeast-to-southwest structure within
the mainland could be observed correctly compared with the
UMAP approach, in which the structure within the mainland was
not maintained. To validate the two large subclusters (i.e.,
mainland and non-mainland) identified by PCA–UMAP, we
compared the classification based on the subclusters with the
individual-level regional information of the recruitment centers.
The degree of correspondence, as measured using a metric
Cohen’s kappa21, was almost perfect (kappa= 0.821, P < 1 ×
10−300)22. We also noted that PCA–UMAP was capable of
discretely distinguishing the Japanese population from other
East Asian populations in 1000 Genomes Project (1KGP)23, as
described for the global populations12 (Supplementary Fig. 2).
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Fig. 2 Dimensionality reduction of biobank-scale genotype data from the Japanese population. Two-dimensional illustrations of biobank-scale genotype
data from the Japanese population by the five dimensionality reduction methods. The color of individual points indicates the region where a given study
individual was recruited. a Geographic description of the Japanese islands and the definitions of the regions and colors. b The first two principal
components from PCA. Individuals in Hondo (mainly in the mainland), in Ryukyu (mainly in Okinawa and surrounding islands), and in Hokkaido-Ainu
(indigenous population in Hokkaido) were defined as described previously. c–e Two-dimensional illustrations by c t-SNE, d PCA-t-SNE, e UMAP,
and f PCA–UMAP. Individuals in the mainland and non-mainland clusters were defined based on the PCA–UMAP results. The pie charts depicted in
b, f represent the constitutions of individuals, who were marked according to the recruitment regions in corresponding colors.
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PCA–UMAP revealed population substructures within Japan.
Motivated by the ability of PCA–UMAP to better identify the
fine-scale structure of the Japanese population compared with the
other four methods, we sought to evaluate whether PCA–UMAP
can further separate insular subpopulations, despite their geo-
graphic adjacency. We applied PCA–UMAP to the genotypes of
individuals who were categorized in the mainland or non-
mainland clusters in the primary PCA–UMAP analysis. While

PCA–UMAP of the mainland cluster did not yield further dis-
sociation (Supplementary Fig. 3), the application of PCA–UMAP
to the non-mainland cluster dissolved it into eight different
subclusters (Fig. 3a and Supplementary Fig. 4 for cluster defini-
tion). One of the subclusters was consisted mostly of the north-
ernmost Hokkaido-Ainu cluster (cluster 1), whereas the
remaining seven (clusters 2–8) were subpopulations from
southwest islands located in the Ryukyu region of Japan (Kyushu
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and Okinawa, Fig. 3b). These southwest islands are located
adjacently, as close as 50 km apart from each other, and had never
been depicted as genetically distinct clusters in the previous
dimensionality reduction methods.

Projection on the transitional layers allows tracking individual
correspondence across each of the five dimensionality reduction
methods (Supplementary Fig. 5). In this layered illustration, we
observed several instances in which individuals in the non-
mainland population fell into the largest cluster (i.e., the
mainland cluster) when using methods other than PCA–UMAP
(red arrows in Supplementary Fig. 5).

To validate these subclusters, we merged clusters 2–6 as
“Kyushu subcluster” and clusters 7 and 8 as “Okinawa
subcluster.” Then, we measured the correspondence between
merged subclusters by PCA–UMAP and individual-level regional
information of recruitment centers. We observed a high level of
correspondence between them (kappa= 0.821, P < 1 × 10−300).

To gain more insights into the finest-scale substructures (i.e.,
subclusters 1–8) identified by PCA–UMAP, we applied the
recently developed method, fineSTRUCTURE24,25, which can
segregate individuals into genetic clusters hierarchically by taking
individual haplotype information. We applied fineSTRUCTURE
to randomly selected subsets of mainland individuals (n= 200)
and non-mainland individuals (n= 1508). The hierarchical
clustering corresponded mostly to the subclusters identified by
PCA–UMAP, although there were some differences caused by the
level of coarseness or fineness of the clustering (Fig. 3e). If we
defined manually the correspondence at the level of 16 clusters as
shown in Supplementary Fig. 6d, the concordance was strikingly
high (kappa= 0.954, P < 1 × 10−300). We considered that the
substructures identified by PCA–UMAP (genotype-based) were
concordant with those identified by fineSTRUCTURE (haplo-
type-based).

To investigate the origin and history of the finest-scale
subpopulations identified by PCA–UMAP, we applied a set of
analytical methods of population genetics. First, we sought to
separate the genotype data into discrete ancestral components, to
capture the genetic history of the structured population26. To this
end, we performed an ADMIXTURE analysis in randomly
selected mainland individuals (n= 3000) and the non-mainland
individuals identified by PCA–UMAP, with k (the number of
assumed ancestral components) ranging from 2 to 14. The
ADMIXTURE analysis at k ≥ 11 revealed that the prominent
genetic components were specific to each of the subclusters, even
though they were located adjacently (Fig. 3c, full result in
Supplementary Fig. 7a). In accordance with the PCA–UMAP
results, at k= 2 or 3, we also observed that the different genetic
components (light green and dark green in Supplementary
Fig. 7a) characterized the mainland and non-mainland popula-
tions. We did not observe an apparent overlap of the genetic
components between Japanese and other East Asians from the
1KGP (Supplementary Fig. 7b). Second, we inferred the patterns

of population splits and mixtures based on the phylogenetic
analysis27. The allele frequency data of individuals within the
subclusters, of those in the mainland of Japan, and of worldwide
populations from the 1KGP, were phylogenetically analyzed using
Treemix software. Recapitulating the known path of the global
population history, the Japanese population diverged first from
the South Asian population, followed by the separation from the
Chinese population (Fig. 3d). Intriguingly, we next observed the
divergence of the Japanese mainland population from Hokkaido-
Ainu (cluster 1) and southwest insular subpopulations (clusters
2–8), which were both identified as a non-mainland cluster by
PCA–UMAP. This observation is consistent with the hypothetical
demographic history, which proposes that the first wave of
human migration from the Eurasian Continent to Japan was the
origin of the individuals in Hokkaido-Ainu and southwest islands
(i.e., non-mainland population), even though those two sub-
populations are now located more than 3000 km apart geogra-
phically. Taken together, the results of PCA–UMAP and
population genetics tools shed light on the diverse genomic
history of Japan.

Dimensionality reduction methods to worldwide populations.
We next sought to investigate the generalizability of the perfor-
mance of the dimensionality reduction methods observed in the
Japanese insular population. Notably, given the importance of the
demographic history and the degree of admixture on the genomic
population structures, the performance should be tested in a
broader context including relatively understudied populations.
We thus applied the five dimensionality reduction methods to the
genotype data from (i) UK Biobank (subset, n= 54,293; see
“Methods” section)28, (ii) the Malaysian Epidemiological Inves-
tigation of Rheumatoid Arthritis (MyEIRA; Malaysian cohort;
n= 2831)29, and (iii) the Genetics of Rheumatoid Arthritis in
Some Arab States Study (Arab cohort; n= 863)30. First, UK
Biobank results suggested that PCA–UMAP could most discretely
and finely distinguish subpopulations other than those with white
British ancestry (red large cluster in Fig. 4a). Second, the results
from the MyEIRA study showed that PCA–UMAP could again
conspicuously identify the subpopulations within the Malaysian
population discretely, which was strikingly concordant with self-
reported ancestry (Fig. 4b). The population clusters from
PCA–UMAP were quite apparent in the Malaysian population, in
which we speculate that few admixture events occurred among
the ancestries. Third, in Arab cohort, although we observed
population substructures, it was difficult to define subpopulations
discretely (Fig. 4c), which was in contrast with the previous
examples. In addition, the concordance with the self-reported
ancestry was lower than it was in the previous examples. Given
the demographic history of the Arab population, we considered
the possibility that the degree of admixture among the ancestries
within the Arab cohort was high, which made it difficult to divide

Fig. 3 Fine-scale population structure disentangled by PCA–UMAP, and its validation using population genetics methods. a Secondary PCA–UMAP to
individuals within the non-mainland cluster. The color of individual points indicates the region from which a given study individual was recruited, as shown
in Fig. 2. The numbers (1–8) in the main figure represent the subcluster definition, which is described in detail in Supplementary Fig. 4. The bottom-left
inset shows the results of PCA–UMAP to all the individuals in the cohort, and the pie charts in the bottom-right inset represent the constitutions of the
subcluster individuals annotated according to the recruitment regions in corresponding colors. b Geographic and color descriptions of the regions shown in
a. The inset describes the Japanese islands, and the main panel describes the expanded view of the southwest islands of the Ryukyu region of Japan
(regions colored in blue in the inset). c ADMIXTURE analysis using the unsupervised maximum-likelihood method under a model with 11 ancestral
components (k= 11). dMaximum-likelihood phylogenetic tree of the Japanese subpopulations defined in Fig. 3a and of the worldwide populations from the
1KGP. The scale bar shows the average standard error of the entries in the covariance matrix. e Correspondence between the secondary PCA–UMAP to the
non-mainland cluster and the hierarchical clustering performed by using fineSTRUCTURE. The right panel shows the clustering results of fineSTRUCTURE,
in which individuals are annotated and colored according to the subclusters defined by PCA–UMAP (left panel).
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the cohort into discrete clusters. Taken together, we concluded
that PCA–UMAP generally had the capacity to identify discrete
subclusters within a population, if the degree of admixture was
not high across the subclusters.

Population substructures can cause a bias in PRS prediction.
One of the goals of genomic research is the improvement of
healthcare through individualized medicine. With an exponential
increase in genetic studies in terms of number and power, PRS is
poised to predict the inborn health risks. Trans-ethnic colla-
borative works also showed the utility of PRS in genetics-driven
identification of key drivers of health outcomes31. However, a
considerable debate on how to implement PRS into clinical
practice remains, particularly regarding its susceptibility to biases.
These biases have been described to be potentially caused by
cryptic population structures32. Nevertheless, the previous studies
of these biases have focused mainly on the large-scale structure of
a population with European ancestry, and were limited in the
number of the investigated traits.

Given the enthusiasm on the upcoming clinical application
of PRS, we need to address the potential biases finely and
comprehensively including non-European populations. Harnes-
sing our demonstration of the finest-scale population structure
within Japan, we finally investigated the PRS differences among
the subpopulations. Since the genetic architecture is different
according to trait33, the PRS differences need to be assessed on a
spectrum of complex human traits. To this end, we performed
GWASs of 45 quantitative traits on the randomly chosen half of
the individuals in the Japanese cohort as a discovery group.
The phenotypes were adjusted for sex, age, age2, 20 principal
components, and a binary variable indicating whether an
individual was identified as a member of the mainland or non-
mainland cluster based on the result of PCA–UMAP, to account

for as much potential confounders as possible. Then, we calculated
PRSs using the GWAS statistics by a thresholding and clumping
method in the other half of individuals as a validation group. We
thus obtained the normalized PRSs and the normalized pheno-
typic values, and quantified the differences between the values of
the non-mainlanders and those of the mainlanders (=Δ normal-
ized PRS and Δ normalized phenotypic value).

We observed a considerable PRS difference between the non-
mainlanders and the mainlanders; Δ normalized PRS ranged from
−0.45 to 0.34 (x-axis in Fig. 5a). While the directions (i.e., signs
of Δ) of the PRS deviations were concordant with those of the
observed phenotypic deviations for more than half of the traits,
we unexpectedly observed discordances of the directions (19 of 45
traits). For example, two representative polygenic traits, height,
and body mass index (BMI), showed contrasting patterns
(Fig. 5b). The negative PRS deviation of height in non-
mainlanders was concordant with the phenotypic deviation and
census data showing a shorter stature in non-mainlanders. This
was in line with previous studies showing that the PRS deviations
according to the regions had followed the actual height
differences34,35. In contrast, the negative PRS deviation of BMI
was discordant with the phenotypic deviation and census data
showing a greater BMI in non-mainlanders. Overall, there was no
correlation between the PRS deviation and the phenotypic
deviation across the 45 traits (Pearson’s r= 0.11, P= 0.45). We
note that no correlation was detected when we restricted the
analysis to the traits with a variance explained by PRS exceeding
1% of the total trait variance (24/45 traits, Pearson’s r = 0.08, P=
0.72). This held true for the 22 binary traits (20 diseases and
smoking/drinking habits; Supplementary Table 1). We again
observed no correlation between the PRS difference and the
difference in the prevalence of the diseases/habits (Pearson’s r=
0.26, P= 0.24, Supplementary Fig. 8).

Malay Indian Chinese Others

Gulf Levant African

White British Mixed Asian African British Chinese Others

PCA t -SNE UMAP PCA-UMAP
M

al
ay

si
a

A
ra

b
U

K

UK

Malaysia

Arab
Japan

a

b

c

PCA-t -SNE

Fig. 4 Application of dimensionality reduction methods to worldwide populations. Results of the application of the five dimensionality reduction methods
to genotypes from a the United Kingdom (UK), b Malaysia, and c the Arab population. In each of the cohorts, an individual plot is annotated by colors
indicating the self-reported ancestry recorded in the cohort.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15194-z

6 NATURE COMMUNICATIONS |         (2020) 11:1569 | https://doi.org/10.1038/s41467-020-15194-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


We sought to tackle the challenging yet important question:
what drives these systematic biases? First, we investigated
the effect of the potential confounding factors that could bias
PRS prediction. We assessed whether the PRS bias was
associated with (a) heritability in the discovery GWAS, (b)
the difference in GWAS heritability between the mainland
and non-mainland populations, (c) variance explained by PRS,

(d) the difference in variance explained by PRS between
them, (e) differences in the distribution of confounding factors
(i.e., age and sex) between them, and (f) the number of
SNPs used in PRS calculations. Here, we defined the bias
as the absolute difference between the PRS difference
(=PRSnon-mainland−PRSmainland) and the phenotypic difference
(=PhenotypicValuenon-mainland−PhenotypicValuemainland). We
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found that none of the potential confounding factors (a)–(f)
were significantly correlated with the bias (Supplementary
Table 2). We here note that these assessments should be
validated further, given the small variances currently explained
by PRSs in part of the investigated traits.

Next, from the phenotypic standpoint, we found a specific
scenario regarding the smaller mean BMI PRS in non-
mainlanders, despite the greater mean BMI observed in non-
mainlanders. The longitudinal data of height and BMI in the
Japanese population in the past 50 years revealed that the mean
BMI in Okinawa prefecture (most of the non-mainland) exceeded
that of the general Japanese population only a decade ago
(Fig. 5c). Before that, the mean BMI in Okinawa prefecture had
been less than that of the general Japanese population. If we
assume that the BMI PRS predicts the BMI in the past one or two
generations, the direction of the PRS difference is concordant
with the phenotypic difference (smaller BMI in the non-
mainland). Okinawa prefecture experienced a dietary habit
change (i.e., westernization) after World War II, which might
explain the rapid increase in BMI observed within Okinawa. This
speculated scenario could be considered as a technical point in
PRS prediction, especially when the phenotype is affected by
relatively rapid environmental changes.

To summarize, we considered that the PRS distributions could
be susceptible to the cryptic population substructures, even within
a relatively homogeneous population. This bias might not be
adjusted, even when the population structure was pre-detected
and added as a covariate in GWASs. The reasons for this bias
would be multifactorial and trait-dependent, which warrants
further investigation. A careful assessment of the genetic and
phenotypic architecture of complex traits is thus necessary when
planning the risk stratification of individuals based on the relative
rank of PRSs.

Discussion
In this study, we demonstrated that PCA–UMAP, a novel non-
linear dimensionality reduction method, could detect a fine and
discrete population structure within the Japanese population at an
unprecedentedly high resolution. The resolution reached high
enough to uncover the genetic diversity among the adjacent
insular subpopulations. The uncovered population structure was
validated using the population genetics tools, which suggested the
genetic diversity related to differences in demographic history.
We finally assessed the differences in PRS distributions related to
the substructures across a wide range of complex human traits.
The deviation in PRSs did not always follow the phenotypic
deviation, and these differences could not be corrected by
including the identified population structures as one of the cov-
ariates. The reasons for this discrepancy were multifactorial,
necessitating both genome and phenome-wise assessment in a
trait-dependent manner.

We revealed that the genomic diversity within a population
could be disentangled using the novel and strong analytical

methodologies. Although we performed a proof-of-concept study
in Japanese, British, Malaysian, and Arab populations, these
approaches should be applied to diverse populations, given the
vast increment in the ability to identify cryptic population
structures. Our study also blows a whistle on the clinical appli-
cations of PRSs, which were more susceptible to subtle genetic
differences than expected previously. Recently, there is a global
action to expand genomic studies from European populations to
diverse populations36. The expanded genetic studies yielded
population-specific construction of PRSs13 and trans-ethnic PRS
meta-analyses through worldwide collaborations31. That being
said, however hard we may try to accommodate minute structures
from worldwide populations into future genomic studies, it would
be virtually unfeasible to perform well-powered GWASs for all
subpopulations and for all the complex traits. Thus, we are in an
emergent need for a practical methodology to derive PRSs to
avoid the disadvantages of the underrepresented subpopulations.

In conclusion, with the novel dimensionality reduction meth-
ods in hand, we uncovered the finest-scale structure of the
Japanese population. This structural diversity highlighted that
PRS analysis still has a room for improvement to achieve truly
individualized medicine.

Methods
Study participants, genotyping, and imputation. Individual genotype data were
obtained from the BioBank Japan (BBJ) project37,38, a biobank that collaboratively
collected DNA and serum samples from 12 medical institutions in Japan and
recruited ~200,000 participants mainly of Japanese ancestry with a diagnosis of at
least one of 47 diseases. We obtained informed consent from all participants
according to the protocols approved by the ethical committee of the Institute of
Medical Science, the University of Tokyo, before enrollment. This study was
approved by the ethical committee of Osaka University Graduate School of
Medicine.

We genotyped the individuals with the Illumina HumanOmniExpressExome
BeadChip or a combination of the Illumina HumanOmniExpress and
HumanExome BeadChips. Individuals who were identified as having a non-
Japanese origin either by self-reporting or by PCA were excluded from the study39.
Individuals with age < 18 or with low genotyping call rates (<98%) were additionally
excluded39,40. For quality control (QC) of genotypes, we excluded variants that met
any of the following criteria: (1) call rate < 99%, (2) P value for Hardy–Weinberg
equilibrium < 1.0 × 10−6, and (3) number of heterozygotes < 539,40. Genotype data
from a total of 171,893 individuals of Japanese origin proceeded to the further
analysis. Haplotype phasing on all 171,893 individuals was performed with Eagle
(version 2.3)41 with default settings, to reduce the switch error rate. Any missing
genotypes were imputed in the process of phasing.

Dimensionality reduction to genotype data of Japanese. After removing
genetically related individuals who were identified based on PI_HAT > 0.125 cal-
culated by PLINK software42 and variants with a minor allele frequency < 0.01, we
performed LD-pruning of the whole-genome variants, with an option “--indep-
pairwise 50 5 0.2”. Pruned-in variants (nvariant= 91,551) from 169,719 individuals
were used for the five dimensionality reduction methods (PCA, t-SNE, PCA–t-
SNE, UMAP, and PCA–UMAP). First, we performed PCA on the pruned genotype
matrix using EIGENSTRAT software7. The first two principal components were
illustrated onto the two-dimensional space. Second, we performed t-SNE using
multicoreTSNE package43 of the python software with default parameters. Third,
we applied t-SNE to the first 50 principal components of the pruned genotypes
with default parameters as PCA–t-SNE. Fourth, we performed UMAP on the
genotype matrix using umap package19 of the python software (ncomponents= 2 and

Fig. 5 Polygenic risk score differentiations between mainland and non-mainland Japanese individuals. a Co-plot of the Δ normalized PRS and Δ
normalized phenotypic value of 45 quantitative traits. The Δ normalized PRS (=normalized PRS in non-mainland−normalized PRS in mainland) is shown on
the x-axis, and the Δ normalized phenotypic value (=normalized phenotypic value in non-mainland−normalized phenotypic value in mainland) is shown on
the y-axis. Pearson’s correlation r and P value between the Δ normalized PRS and the Δ normalized phenotypic value are also described. The color of the
dots represents the category of each trait. The right table shows the trait categories in color and the abbreviations of the traits. b Histograms of the PRS
(top) and observed phenotypic value (bottom) for height (left) and BMI (right). In each panel, the distribution in the mainland is colored in gray, and that in
non-mainland is colored in blue. The mean values of height and BMI retrieved from census data are shown in the middle, between the PRS and phenotypic
histograms. The blue diamonds are the per-SD differences of height and BMI in non-mainland individuals. c Longitudinal census data of height (left) and
BMI (right) in Japan. In each plot, the mean trait value of the general Japanese as a proxy of mainland (gray) and that of residents in Okinawa prefecture as
a proxy of non-mainland (blue) are illustrated. The gray shadow indicates the 95% confidence interval.
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with default parameters). Fifth, we applied UMAP to the first 50 principal com-
ponents of the pruned genotypes (ncomponents= 2 and default parameters) as
PCA–UMAP. We annotated each of the individuals on the two-dimensional space
by color, indicating the seven regions where the study individuals are recruited
(namely, Hokkaido, Tohoku, Kanto-Koshinetsu, Chubu-Hokuriku, Kinki, Kyushu,
and Okinawa). Individuals in Hokkaido-Ainu district, Hondo and Ryukyu were
defined based on the result of PCA analysis as described in previous literature15,16.
Individuals of the mainland and non-mainland clusters were classified based on the
PCA–UMAP results (Fig. 2f). In addition to the genotypes of BBJ individuals, we
merged them with those of East Asian individuals from the 1KGP phase3v5. The
merged and pruned genotypes (ntotal= 170,193) were used again as an input to the
five dimensionality reduction methods.

Next, we applied PCA–UMAP to the genotype data from individuals within the
mainland and non-mainland clusters. We annotated each of the individuals on the
two-dimensional space by color, which denoted the above-mentioned regions from
which the study individuals were recruited (the geographic distributions are
depicted in Fig. 3b). As the secondary application of PCA–UMAP to individuals of
the non-mainland cluster further separated them into distinct clusters, we defined
them manually as the eight subclusters (i.e., Hokkaido-Ainu cluster 1, Kyushu
clusters 2–6, and Okinawa clusters 7–8; Supplementary Fig. 4).

To clarify the positional relationship of each individual throughout the different
dimensionality reduction methods, we used the Grimon (Graphical interface to
visualize multi-omics networks; https://github.com/mkanai/grimon) software44 to
visualize two dimensional plots from each of the dimensionality reduction methods
onto three-dimensional parallel coordinates. We connected the corresponding
individuals in the non-mainland cluster, and colored them according to the region
information, as described above.

fineSTRUCTURE analysis. We applied the ChromoPainter (CP) and fineS-
TRUCTURE (FS) (version 2) software on the subset of individuals representing the
population substructures of Japan. We first randomly selected 200 individuals from
the mainland populations and from each of the eight subclusters within the non-
mainland populations. If a subcluster comprised <200 individuals, we adopted all
of them. Thus, we selected a subset of mainland individuals (n= 200) and non-
mainland individuals (n= 1,508). We used the phased haplotype data of these
individuals with further QC of MAF > 0.0525 as an input for CP. The phased
genotype files were converted into CP format and global switch and emission rates
were estimated using CP’s expectation-maximization (EM) algorithm (10 itera-
tions). Kerminen S. et al. verified that the EM estimates obtained using 24 indi-
viduals were not notably different from those obtained using larger samples of 238
individuals; thus, we used 102 of the 1708 individuals for the parameter estimation.
CP was run using the estimated global parameters and the HapMap build 37
recombination map, which was converted into the CP format. Using CP’s
chunkcounts output, FS was then run with the default options, without a pre-
defined number of populations.

Dimensionality reduction to worldwide genotype data. We additionally col-
lected genotype data from UK Biobank28, MyEIRA study (Malaysian Epidemio-
logical Investigation of rheumatoid Arthritis; Malaysian cohort to study the
genetics of rheumatoid arthritis)29, and an Arab cohort (the Genetics of Rheu-
matoid Arthritis in Some Arab States Study)30.

The UK Biobank project is a population-based prospective cohort that recruited
~500,000 people aged between 40 and 69 years from 2006 to 2010 across the
United Kingdom (https://www.ukbiobank.ac.uk/). Genotyping was conducted
using either the Applied Biosystems UK BiLEVE Axiom Array or the Applied
Biosystems UK Biobank Axiom Array. Genotypes were further imputed using a
combination of the Haplotype Reference Consortium, UK10K, and 1000 Genomes
Phase 3 reference panels. For the computational scalability, we randomly selected
13% of the genetically unrelated participants in the UK Biobank, as described
elsewhere28. We collected the genotyped variants of those individuals from the
imputed dataset. For QC, we excluded variants with a minor allele frequency <
0.05, PHWE < 1 × 10−6, or INFO < 0.8. Then, we performed LD-pruning of the
whole-genome variants, with an option “--indep-pairwise 50 5 0.1”. After LD-
pruning, we had 54,293 individuals and 70,357 variants in total.

The MyEIRA (Malaysian Epidemiological Investigation of Rheumatoid
Arthritis) is a population-based case-control study that recruited cases (rheumatoid
arthritis) and controls in Peninsular Malaysia, which includes three major ethnic
groups (i.e., Malays, Chinese, and Indians). The details of the MyEIRA have been
described elsewhere29,45. The rheumatoid arthritis cases and controls were matched
by age, sex, and residential area. All participants provided extensive information on
socioeconomic background, lifestyle, life events as well as occupational exposures.
Genotyping was conducted using an Illumina iSelect HD custom genotyping array
(Immunochip, Illumina, Inc, San Diego, CA, USA). For QC, we excluded duplicate
variants, indels, and variants with a minor allele frequency < 0.01 or PHWE < 1 ×
10−6. We imputed any missing variants using Beagle (version 5.0), and then
performed LD-pruning of the whole-genome variants, with an option “--indep-
pairwise 50 5 0.2”. After LD-pruning, we had 2831 individuals and 26,854 variants
in total.

The individual information of the Arab cohort is described extensively
elsewhere30. Participants were enrolled from five centers in Jordan, the Kingdom of

Saudi Arabia, Lebanon, Qatar, and the United Arab Emirates. For QC, we excluded
duplicate variants, indels, and variants with a minor allele frequency < 0.01 or
PHWE < 1 × 10−6. We imputed any missing variants using Beagle (version 5.0), and
then performed LD-pruning of the whole-genome variants, with an option
“--indep-pairwise 50 5 0.2”. After LD-pruning, we had 863 individuals and 89,503
variants in total.

For all three cohorts, the five dimensionality reduction methods were applied to
the QCed and LD-pruned genotypes. The results were illustrated in the two-
dimensional space and colored according to the self-reported ancestry in each of
the cohorts.

Ancestral analysis. ADMIXTURE (version 1.3.0) software was used to perform
unsupervised estimation of an ancestral component of individuals from each of the
subpopulations. We selected the individuals for this analysis based on the
PCA–UMAP results. We randomly selected individuals in the mainland cluster
(nindividual= 3000) and Okinawa cluster 7 (nindividual= 3000) to reduce the com-
putational load. All individuals identified as belonging to other subclusters in the
non-mainland cluster were included into the analysis. The variants used in the
dimensionality reduction methods (nvariant= 91,551) were used as an input gen-
otype for ADMIXTURE. ADMIXTURE was run with a k value (number of
assumed ancestral components) ranging from 2 to 12. A representative result with
k= 11 is illustrated in Fig. 3c, colored according to ancestral components and
sorted based on the annotated subpopulations. All results with a k ranging from 2
to 12 are shown in Supplementary Fig. 7.

Phylogenetic analysis. TreeMix software (version 1.13) was used to infer the
patterns of population splits and mixtures of the worldwide and Japanese popu-
lations. We did not manually model the migration event, as we did not have
concrete evidence for the migration and admixture events in Japan. We merged the
genotype data of individuals from BBJ with those of the worldwide population in
the 1KGP phase3 version 5. For the autosomal biallelic SNPs (nvariant= 481,954)
which existed both in array genotype in BBJ and in whole genome sequence data in
the 1KGP, we calculated the allele frequency stratified by the populations and
subpopulations defined by PCA–UMAP. We then built the maximum-likelihood
tree using blocks of 1000 SNPs to account for LD.

PRS differentiation analysis. PRS should be constructed from the GWASs that
enrolled the individuals from the matched population without overlap with the
validation cohort. As BBJ is one of the largest genotyped biobanks of an East Asian
population, we randomly split the study individuals into the discovery group (n=
84,908) and the validation group (n= 84,813). As we aimed to investigate PRS
differences between the mainland and non-mainland clusters, we set two cohorts to
have approximately the same number of individuals from those clusters. We
conducted GWASs of the 45 quantitative traits and 22 case-control binary traits in
the discovery group. The detailed information of phenotypes of individuals in the
discovery group is summarized in Supplementary Table 1. To account for the
population stratification, we included sex, age, 20 principal components, and
whether an individual was included in the mainland cluster or the non-mainland
cluster as covariates. The study-specific exclusion criteria and covariates for
GWASs of the quantitative traits are described in Supplementary Data 1.

Using the summary statistics of these 67 GWASs, we constructed PRSs using a
thresholding and clumping method. For P value thresholding, we adopted a
relatively conservative P value threshold of 5.0 × 10−6, since PRSs based on large
numbers of SNPs below genome-wide significance are susceptible to biases due to
the uncorrected population structure46. LD clumping was performed using the
PLINK software (version 1.90), so that the variants at least 1 Mb apart and with LD
r2 < 0.1 were selected. Individual scores were created by adding the dosage of the
risk alleles at each variant and then multiplying the sum by the effect size from the
discovery group. The derived PRSs were rank-normalized within the validation
group to remove outlier effects. The discovery GWAS heritability (hg), LD score
regression (LDSC) intercept47, and the variance explained by the PRS in the
validation group are described in Supplementary Table 3. The variance explained
by the PRS was obtained by subtracting the adjusted R-squared in a nested linear
regression model (phenotype~covariates) from that in a full linear regression
model (phenotype~PRS+ covariates). The PRS differentiation (Δ normalized PRS)
of each phenotype was obtained by subtracting the mean of the normalized PRS of
the mainland individuals from those of the non-mainland individuals as in the
following equation:

ΔPRSnormalized ¼ mean PRSnormalized in nonmainlandð Þ
�mean PRSnormalized inmainlandð Þ ð1Þ

The phenotype differentiation (Δ normalized phenotypic value) was obtained by
subtracting the mean of the normalized phenotype of mainland individuals from
that of non-mainland individuals as in the following equation:

ΔPhenotypicValuenormalized ¼ mean PhenotypicValuenormalized in nonmainland
� �

�mean PhenotypicValuenormalized inmainland
� �

ð2Þ
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Phenotype normalization was performed by rank-normalizing the residuals of
phenotypes regressed on sex, age and age2 as covariates. For height and BMI, we
illustrated the histograms of the normalized PRS of mainland individuals (gray)
and of non-mainland individuals (blue), and the histograms of normalized
phenotype of mainland individuals (gray) and of non-mainland individuals (blue).
To validate the phenotypic differentiations externally, we obtained height and BMI
statistics within each prefecture in Japan from the census data provided by the
Japanese government in 2018 and 2017, respectively (e-Stat). The mean phenotypic
value is shown on the histograms to indicate the per SD phenotypic difference
between mainland individuals and non-mainland individuals. As the census data
was on prefecture-basis, the mean phenotypic value in mainland individuals was
represented by that for the general Japanese population. The mean phenotypic
value in non-mainland individuals was represented by that in residents of Okinawa
prefecture, which comprised the majority of the non-mainland cluster.

Correlation between confounding factors and the bias in PRS. We selected six
potential confounding factors that might potentially cause a bias in polygenic risk
predictions. The details of this analysis are also described in Supplementary Table 2.

(a) GWAS heritability in the discovery GWAS: we obtained the heritability
estimations of each trait in the discovery GWAS, calculated using the LDSC
software.

(b) Differences in GWAS heritability between the mainland and non-mainland
populations: we calculated the GWAS heritability within the mainland and
non-mainland populations using the GCTA software48 with a randomly
selected same number of individuals. As the number of recorded phenotypes
was always lower in the non-mainland population than in the mainland
population, we adopted the number of effective phenotypes in the non-
mainland population for random selection among the mainland population.
Then, we obtained the absolute differences between the heritability values
(mainland vs. non-mainland).

(c) Variance explained by PRS in a whole cohort: we obtained the variance
explained by PRS in the validation cohort per trait, as described in the
previous section.

(d) Differences in variance explained by PRS between the mainland and non-
mainland populations: we calculated the variance explained by PRS per trait,
separately in mainland and non-mainland individuals. We then obtained
the absolute differences between the variances (mainland vs. non-mainland).

(e) Differences in the distribution of confounding factors between the mainland
and non-mainland populations: we obtained the age distribution and the sex
composition between, separately for the mainland and non-mainland
populations.

(f) The number of SNPs used in PRS calculations: we obtained the number of
SNPs used in the calculation of PRS (weighted allelic sum of these SNPs)
per trait.

Next, we defined the bias in per-trait PRS as in the following equation:

BIAStrait ¼ PRSnonmainland;trait � PRSmainland;trait

� ����
� PhenotypicValuenonmainland;trait � PhenotypicValuemainland;trait

� ����
ð3Þ

With the exception of (e), we performed a correlation test between this bias and the
quantitative value of potential confounding factors across 45 traits, and obtained
Pearson’s r and P values as in the following equation:

BIAS � CONFOUNDING ið Þ; where ið Þ is að Þ; bð Þ; cð Þ; dð Þ; or fð Þ ð4Þ

Longitudinal data of height and BMI. We collected the longitudinal census data
of height and BMI from annual school health checkup data across Japan and
according to the prefectures of this country (e-Stat). Starting in 1972 (when the
Okinawa prefecture returned to the Japanese government from US occupation and
census data collection started), every other year, we collected the mean height and
BMI of students aged 17 years in Japan as a proxy of the mainland, and of those in
Okinawa prefecture as a proxy of the non-mainland. As the data were generated
separately for males and females, we used the average of the values in males and
those in females. Then, for each dataset, we plotted a regression line with 95%
confidence interval based on local polynomial regression fitting, by using the
geom_smooth() function in the ggplot2 package of the R statistical software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The genotype data of BioBank Japan used in this study are available from the Japanese
Genotype–phenotype Archive (JGA; http://trace.ddbj.nig.ac.jp/jga/index_e.html) with
accession code JGAD00000000123 [https://ddbj.nig.ac.jp/jga/viewer/view/study/
JGAS00000000114]. The GWAS summary statistics of BioBank Japan are available at the
National Bioscience Database Center (NBDC) Human Database with the accession code

hum0014 [https://humandbs.biosciencedbc.jp/en/hum0014-v18]. UK Biobank analysis
was conducted via the application 31063. All other data are contained in the article file
and its supplementary information or available upon request.

Code availability
We provide the custom scripts that we used to perform five dimensionality reduction
methods on genotype at https://github.com/saorisakaue/Genotype-dimensionality-
reduction. We also used the publicly available softwares, which were listed and described
in the Methods section in our manuscript.
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